In the realm of conformal geometry, we give a classification of the Euclidean hypersurfaces that admit a non-trivial conformal infinitesimal variation. In the restricted case of conformal variations, such a classification was obtained by E. Cartan in 1917. The case of infinitesimal isometric variations was done by U. Sbrana in 1908. In particular, we show that the class of hypersurfaces that allow a conformal infinitesimal variation is much larger than the one considered by Cartan.