Do you want to publish a course? Click here

Maximizing Information Gain in Partially Observable Environments via Prediction Reward

95   0   0.0 ( 0 )
 Added by Yash Satsangi
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Information gathering in a partially observable environment can be formulated as a reinforcement learning (RL), problem where the reward depends on the agents uncertainty. For example, the reward can be the negative entropy of the agents belief over an unknown (or hidden) variable. Typically, the rewards of an RL agent are defined as a function of the state-action pairs and not as a function of the belief of the agent; this hinders the direct application of deep RL methods for such tasks. This paper tackles the challenge of using belief-based rewards for a deep RL agent, by offering a simple insight that maximizing any convex function of the belief of the agent can be approximated by instead maximizing a prediction reward: a reward based on prediction accuracy. In particular, we derive the exact error between negative entropy and the expected prediction reward. This insight provides theoretical motivation for several fields using prediction rewards---namely visual attention, question answering systems, and intrinsic motivation---and highlights their connection to the usually distinct fields of active perception, active sensing, and sensor placement. Based on this insight we present deep anticipatory networks (DANs), which enables an agent to take actions to reduce its uncertainty without performing explicit belief inference. We present two applications of DANs: building a sensor selection system for tracking people in a shopping mall and learning discrete models of attention on fashion MNIST and MNIST digit classification.



rate research

Read More

Multi-agent reinforcement learning (MARL) under partial observability has long been considered challenging, primarily due to the requirement for each agent to maintain a belief over all other agents local histories -- a domain that generally grows exponentially over time. In this work, we investigate a partially observable MARL problem in which agents are cooperative. To enable the development of tractable algorithms, we introduce the concept of an information state embedding that serves to compress agents histories. We quantify how the compression error influences the resulting value functions for decentralized control. Furthermore, we propose an instance of the embedding based on recurrent neural networks (RNNs). The embedding is then used as an approximate information state, and can be fed into any MARL algorithm. The proposed embed-then-learn pipeline opens the black-box of existing (partially observable) MARL algorithms, allowing us to establish some theoretical guarantees (error bounds of value functions) while still achieving competitive performance with many end-to-end approaches.
Recent superhuman results in games have largely been achieved in a variety of zero-sum settings, such as Go and Poker, in which agents need to compete against others. However, just like humans, real-world AI systems have to coordinate and communicate with other agents in cooperative partially observable environments as well. These settings commonly require participants to both interpret the actions of others and to act in a way that is informative when being interpreted. Those abilities are typically summarized as theory f mind and are seen as crucial for social interactions. In this paper we propose two different search techniques that can be applied to improve an arbitrary agreed-upon policy in a cooperative partially observable game. The first one, single-agent search, effectively converts the problem into a single agent setting by making all but one of the agents play according to the agreed-upon policy. In contrast, in multi-agent search all agents carry out the same common-knowledge search procedure whenever doing so is computationally feasible, and fall back to playing according to the agreed-upon policy otherwise. We prove that these search procedures are theoretically guaranteed to at least maintain the original performance of the agreed-upon policy (up to a bounded approximation error). In the benchmark challenge problem of Hanabi, our search technique greatly improves the performance of every agent we tested and when applied to a policy trained using RL achieves a new state-of-the-art score of 24.61 / 25 in the game, compared to a previous-best of 24.08 / 25.
This work studies the problem of batch off-policy evaluation for Reinforcement Learning in partially observable environments. Off-policy evaluation under partial observability is inherently prone to bias, with risk of arbitrarily large errors. We define the problem of off-policy evaluation for Partially Observable Markov Decision Processes (POMDPs) and establish what we believe is the first off-policy evaluation result for POMDPs. In addition, we formulate a model in which observed and unobserved variables are decoupled into two dynamic processes, called a Decoupled POMDP. We show how off-policy evaluation can be performed under this new model, mitigating estimation errors inherent to general POMDPs. We demonstrate the pitfalls of off-policy evaluation in POMDPs using a well-known off-policy method, Importance Sampling, and compare it with our result on synthetic medical data.
In this work we explore an auxiliary loss useful for reinforcement learning in environments where strong performing agents are required to be able to navigate a spatial environment. The auxiliary loss proposed is to minimize the classification error of a neural network classifier that predicts whether or not a pair of states sampled from the agents current episode trajectory are in order. The classifier takes as input a pair of states as well as the agents memory. The motivation for this auxiliary loss is that there is a strong correlation with which of a pair of states is more recent in the agents episode trajectory and which of the two states is spatially closer to the agent. Our hypothesis is that learning features to answer this question encourages the agent to learn and internalize in memory representations of states that facilitate spatial reasoning. We tested this auxiliary loss on a navigation task in a gridworld and achieved 9.6% increase in accumulative episode reward compared to a strong baseline approach.
Simulation provides a safe and efficient way to generate useful data for learning complex robotic tasks. However, matching simulation and real-world dynamics can be quite challenging, especially for systems that have a large number of unobserved or unmeasurable parameters, which may lie in the robot dynamics itself or in the environment with which the robot interacts. We introduce a novel approach to tackle such a sim-to-real problem by developing policies capable of adapting to new environments, in a zero-shot manner. Key to our approach is an error-aware policy (EAP) that is explicitly made aware of the effect of unobservable factors during training. An EAP takes as input the predicted future state error in the target environment, which is provided by an error-prediction function, simultaneously trained with the EAP. We validate our approach on an assistive walking device trained to help the human user recover from external pushes. We show that a trained EAP for a hip-torque assistive device can be transferred to different human agents with unseen biomechanical characteristics. In addition, we show that our method can be applied to other standard RL control tasks.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا