Do you want to publish a course? Click here

Statistical error estimates in dynamical mean-field theory and extensions thereof

81   0   0.0 ( 0 )
 Added by Patrick Kappl
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We employ the jackknife algorithm to analyze the propagation of the statistical quantum Monte Carlo error through the Bethe--Salpeter equation. This allows us to estimate the error of dynamical mean-field theory calculations of the susceptibility and of dynamical vertex approximation calculations of the self-energy. We find that the different frequency components of the susceptibility are uncorrelated, whereas those of the self-energy are correlated. For improving the quality of the correlation matrix taking sufficiently many jackknife bins is key, while for reducing the standard error of the mean sufficiently many Monte Carlo measurements are necessary. We furthermore show that even in the case of the self-energy, the finite covariance does not have a sizable influence on the analytic continuation.



rate research

Read More

Extensions of dynamical-mean-field-theory (DMFT) make use of quantum impurity models as non-perturbative and exactly solvable reference systems which are essential to treat the strong electronic correlations. Through the introduction of retarded interactions on the impurity, these approximations can be made two-particle self-consistent. This is of interest for the Hubbard model, because it allows to suppress the antiferromagnetic phase transition in two-dimensions in accordance with the Mermin-Wagner theorem, and to include the effects of bosonic fluctuations. For a physically sound description of the latter, the approximation should be conserving. In this paper we show that the mutual requirements of two-particle self-consistency and conservation lead to fundamental problems. For an approximation that is two-particle self-consistent in the charge- and longitudinal spin channel, the double occupancy of the lattice and the impurity are no longer consistent when computed from single-particle properties. For the case of self-consistency in the charge- and longitudinal as well as transversal spin channels, these requirements are even mutually exclusive so that no conserving approximation can exist. We illustrate these findings for a two-particle self-consistent and conserving DMFT approximation.
The dynamical mean-field theory (DMFT) is a widely applicable approximation scheme for the investigation of correlated quantum many-particle systems on a lattice, e.g., electrons in solids and cold atoms in optical lattices. In particular, the combination of the DMFT with conventional methods for the calculation of electronic band structures has led to a powerful numerical approach which allows one to explore the properties of correlated materials. In this introductory article we discuss the foundations of the DMFT, derive the underlying self-consistency equations, and present several applications which have provided important insights into the properties of correlated matter.
Dynamical mean field methods are used to calculate the phase diagram, many-body density of states, relative orbital occupancy and Fermi surface shape for a realistic model of $LaNiO_3$-based superlattices. The model is derived from density functional band calculations and includes oxygen orbitals. The combination of the on-site Hunds interaction and charge-transfer between the transition metal and the oxygen orbitals is found to reduce the orbital polarization far below the levels predicted either by band structure calculations or by many-body analyses of Hubbard-type models which do not explicitly include the oxygen orbitals. The findings indicate that heterostructuring is unlikely to produce one band model physics and demonstrate the fundamental inadequacy of modeling the physics of late transition metal oxides with Hubbard-like models.
Transition metal oxide heterostructures often, but by far not always, exhibit strong electronic correlations. State-of-the-art calculations account for these by dynamical mean field theory (DMFT). We discuss the physical situations in which DMFT is needed, not needed, and where it is actually not sufficient. By means of an example, SrVO$_3$/SrTiO$_3$, we discuss step-by-step and figure-by-figure a density functional theory(DFT)+DMFT calculation. The second part reviews DFT+DMFT calculations for oxide heterostructure focusing on titanates, nickelates, vanadates, and ruthenates.
We examine the cluster-size dependence of the cellular dynamical mean-field theory (CDMFT) applied to the two-dimensional Hubbard model. Employing the continuous-time quantum Monte Carlo method as the solver for the effective cluster model, we obtain CDMFT solutions for 4-, 8-, 12-, and 16-site clusters at a low temperature. Comparing various periodization schemes, which are used to construct the infinite-lattice quantities from the cluster results, we find that the cumulant periodization yields the fastest convergence for the hole-doped Mott insulator where the most severe size dependence is expected. We also find that the convergence is much faster around (0,0) and (pi/2,pi/2) than around (pi,0) and (pi,pi). The cumulant-periodized self-energy seems to be close to its thermodynamic limit already for a 16-site cluster in the range of parameters studied. The 4-site results remarkably agree well with the 16-site results, indicating that the previous studies based on the 4-site cluster capture the essence of the physics of doped Mott insulators.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا