Do you want to publish a course? Click here

Accurate Treatment of Comptonization in X-ray Illuminated Accretion Disks

79   0   0.0 ( 0 )
 Added by Javier Garcia
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

A large fraction of accreting black hole and neutron stars systems present clear evidence of the reprocessing of X-rays in the atmosphere of an optically-thick accretion disk. The main hallmarks of X-ray reflection include fluorescent K-shell emission lines from iron ($sim 6.4-6.9$ keV), the absorption iron K-edge ($sim 7-9$ keV), and a broad featureless component known as the Compton hump ($sim 20-40$ keV). This Compton hump is produced as the result of the scattering of high-energy photons ($E gtrsim 10$ keV) of the relatively colder electrons ($T_e sim 10^5-10^7$ K) in the accretion disk, in combination with photoelectric absorption from iron. The treatment of this process in most current models of ionized X-ray reflection has been done using an approximated Gaussian redistribution kernel. This approach works sufficiently well up to $sim100$ keV, but it becomes largely inaccurate at higher energies and at relativistic temperatures ($T_esim10^9$ K). We present new calculations of X-ray reflection using a modified version of our code XILLVER, including an accurate solution for Compton scattering of the reflected unpolarized photons in the disk atmosphere. This solution takes into account quantum electrodynamic and relativistic effects allowing the correct treatment of high photon energies and electron temperatures. We show new reflection spectra computed with this model, and discuss the improvements achieved in the reproducing the correct shape of the Compton hump, the discrepancies with previous calculations, and the expected impact of these new models in the interpretation of observational data.



rate research

Read More

X-ray flux from the inner hot region around central compact object in a binary system illuminates the upper surface of an accretion disc and it behaves like a corona. This region can be photoionised by the illuminating radiation, thus can emit different emission lines. We study those line spectra in black hole X-ray binaries for different accretion flow parameters including its geometry. The varying range of model parameters captures maximum possible observational features. We also put light on the routinely observed Fe line emission properties based on different model parameters, ionization rate, and Fe abundances. We find that the Fe line equivalent width $W_{rm E}$ decreases with increasing disc accretion rate and increases with the column density of the illuminated gas. Our estimated line properties are in agreement with observational signatures.
Relativistic reflection features in the X-ray spectra of black hole binaries and AGNs are thought to be produced through illumination of a cold accretion disk by a hot corona. In this work, we assume that the corona has the shape of an infinitesimally thin disk with its central axis the same as the rotational axis of the black hole. The corona can either be static or corotate with the accretion disk. We calculate the disks emissivity profiles and iron line shapes for a set of coronal radii and heights. We incorporate these emissivity profiles into RELXILL_NK and we simulate some observations of a black hole binary with NuSTAR to study the impact of a disk-like coronal geometry on the measurement of the properties of the system and, in particular, on the possibility of testing the Kerr nature of the source. We find that with a disk-like corona it becomes difficult, in general, to constrain the geometric properties of the black hole spacetime, while the astrophysical properties of the accretion disk are still well recovered.
179 - J. M. Miller 2014
The X-ray spectra of the most extreme ultra-luminous X-ray sources -- those with L > 1 E+40 erg/s -- remain something of a mystery. Spectral roll-over in the 5-10 keV band was originally detected in in the deepest XMM-Newton observations of the brightest sources; this is confirmed in subsequent NuSTAR spectra. This emission can be modeled via Comptonization, but with low electron temperatures (kT_e ~ 2 keV) and high optical depths (tau ~ 10) that pose numerous difficulties. Moreover, evidence of cooler thermal emission that can be fit with thin disk models persists, even in fits to joint XMM-Newton and NuSTAR observations. Using NGC 1313 X-1 as a test case, we show that a patchy disk with a multiple temperature profile may provide an excellent description of such spectra. In principle, a number of patches within a cool disk might emit over a range of temperatures, but the data only require a two-temperature profile plus standard Comptonization, or three distinct blackbody components. A mechanism such as the photon bubble instability may naturally give rise to a patchy disk profile, and could give rise to super-Eddington luminosities. It is possible, then, that a patchy disk (rather than a disk with a standard single-temperature profile) might be a hallmark of accretion disks close to or above the Eddington limit. We discuss further tests of this picture, and potential implications for sources such as narrow-line Seyfert-1 galaxies (NLSy1s) and other low-mass active galactic nuclei (AGN).
We have calculated the relativistic reflection component of the X-ray spectra of accretion disks in active galactic nuclei (AGN). Our calculations have shown that the spectra can be significantly modified by the motion of the accretion flow and the gravity and rotation of the central black hole. The absorption edges in the spectra suffer severe energy shifts and smearing, and the degree of distortion depends on the system parameters, in particular, the inner radius of the accretion disk and the disk viewing inclination angles. The effects are significant. Fluorescent X-ray emission lines from the inner accretion disk could be powerful diagnostic of space-time distortion and dynamical relativistic effects near the event horizons of accreting black holes. However, improper treatment of the reflection component in fitting the X-ray continuum could give rise to spurious line-like features. These features mimic the true fluorescent emission lines and may mask their relativistic signatures. Fully relativistic models for reflection continua together with the emission lines are needed in order to extract black-hole parameters from the AGN X-ray spectra.
Plasma accreted onto the surface of a neutron star can ignite due to unstable thermonuclear burning and produce a bright flash of X-ray emission called a Type-I X-ray burst. Such events are very common; thousands have been observed to date from over a hundred accreting neutron stars. The intense, often Eddington-limited, radiation generated in these thermonuclear explosions can have a discernible effect on the surrounding accretion flow that consists of an accretion disk and a hot electron corona. Type-I X-ray bursts can therefore serve as direct, repeating probes of the internal dynamics of the accretion process. In this work we review and interpret the observational evidence for the impact that Type-I X-ray bursts have on accretion disks and coronae. We also provide an outlook of how to make further progress in this research field with prospective experiments and analysis techniques, and by exploiting the technical capabilities of the new and concept X-ray missions ASTROSAT, NICER, HXMT, eXTP, and STROBE-X.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا