Do you want to publish a course? Click here

Hunting for possible Higgs-like boson beyond the Standard Model

80   0   0.0 ( 0 )
 Added by Xing-Dao Guo
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

A recent preliminary investigation based on Durguts report at the American Physical Society site shows a structure at $18.4~ {rm GeV}$ exists in the invariant mass distribution of $Upsilon l^+l^- ~ (l = e,, mu)$ at the LHC center-of-mass energy of $7$ and $8~ {rm TeV}$. Its appearance attracts attention of theorists and experimentalists of high energy physics, because it might be a Higgs-like boson of $18.4~ {rm GeV}$ which would serve as a signal of the new physics beyond the Standard Model. We have carried out computations on the corresponding quantities (production and decay rates) based on quantum field theory and compared the results with experimental data. Our numerical results do not support the assertion that the $18.4~ {rm GeV}$ peak corresponds to a neutral $0^{++}$ boson which decays into $Upsilon l^+l^-$. Much further works (both experimental and theoretical) are badly needed.



rate research

Read More

169 - Gregory Schott 2012
Results of recent Higgs boson and beyond standard model searches in CMS performed with datasets of 1.0 - 1.7 fb-1 will be summarized in this proceeding contributed to the 41st International Symposium on Multiparticle Dynamics (ISMD2011).
We consider the Higgs boson decay processes and its production, and provide a parameterisation tailored for testing models of new physics beyond the Standard Model. We also compare our formalism to other existing parameterisations based on scaling factors in front of the couplings and to effective Lagrangian approaches. Different formalisms allow to best address different aspects of the Higgs boson physics. The choice of a particular parameterisation depends on a non-obvious balance of quantity and quality of the available experimental data, envisaged purpose for the parameterisation and degree of model independence, importance of the radiative corrections, scale at which new particles appear explicitly in the physical spectrum. At present only simple parameterisations with a limited number of fit parameters can be performed, but this situation will improve with the forthcoming experimental LHC data. Detailed fits can only be performed by the experimental collaborations at present, as the full information on the different decay modes is not completely available in the public domain. It is therefore important that different approaches are considered and that the most detailed information is made available to allow testing the different aspects of the Higgs boson physics and the possible hints beyond the Standard Model.
97 - Marek Tasevsky 2014
We review activities in the field of theoretical, phenomenological and experimental studies related to the production of the Higgs boson in central exclusive processes at LHC in models beyond Standard Model. Prospects in the context of the Higgs boson discovery at LHC in 2012 and of proposals to build forward proton detectors at ATLAS and CMS side are summarized.
The high-energy scattering of massive electroweak bosons, known as vector boson scattering (VBS), is a sensitive probe of new physics. VBS signatures will be thoroughly and systematically investigated at the LHC with the large data samples available and those that will be collected in the near future. Searches for deviations from Standard Model (SM) expectations in VBS facilitate tests of the Electroweak Symmetry Breaking (EWSB) mechanism. Current state-of-the-art tools and theory developments, together with the latest experimental results, and the studies foreseen for the near future are summarized. A review of the existing Beyond the SM (BSM) models that could be tested with such studies as well as data analysis strategies to understand the interplay between models and the effective field theory paradigm for interpreting experimental results are discussed. This document is a summary of the EU COST network VBScan workshop on the sensitivity of VBS processes for BSM frameworks that took place December 4-5, 2019 at the LIP facilities in Lisbon, Portugal. In this manuscript we outline the scope of the workshop, summarize the different contributions from theory and experiment, and discuss the relevant findings.
In models with an extended Higgs sector there exists an alignment limit, in which the lightest CP-even Higgs boson mimics the Standard Model Higgs. The alignment limit is commonly associated with the decoupling limit, where all non-standard scalars are significantly heavier than the $Z$ boson. However, alignment can occur irrespective of the mass scale of the rest of the Higgs sector. In this work we discuss the general conditions that lead to alignment without decoupling, therefore allowing for the existence of additional non-standard Higgs bosons at the weak scale. The values of $tanbeta$ for which this happens are derived in terms of the effective Higgs quartic couplings in general two-Higgs-doublet models as well as in supersymmetric theories, including the MSSM and the NMSSM. Moreover, we study the information encoded in the variations of the SM Higgs-fermion couplings to explore regions in the $m_A - tanbeta$ parameter space.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا