Do you want to publish a course? Click here

Class-Aware Domain Adaptation for Improving Adversarial Robustness

171   0   0.0 ( 0 )
 Added by Xianxu Hou
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Recent works have demonstrated convolutional neural networks are vulnerable to adversarial examples, i.e., inputs to machine learning models that an attacker has intentionally designed to cause the models to make a mistake. To improve the adversarial robustness of neural networks, adversarial training has been proposed to train networks by injecting adversarial examples into the training data. However, adversarial training could overfit to a specific type of adversarial attack and also lead to standard accuracy drop on clean images. To this end, we propose a novel Class-Aware Domain Adaptation (CADA) method for adversarial defense without directly applying adversarial training. Specifically, we propose to learn domain-invariant features for adversarial examples and clean images via a domain discriminator. Furthermore, we introduce a class-aware component into the discriminator to increase the discriminative power of the network for adversarial examples. We evaluate our newly proposed approach using multiple benchmark datasets. The results demonstrate that our method can significantly improve the state-of-the-art of adversarial robustness for various attacks and maintain high performances on clean images.

rate research

Read More

Domain adaptation (DA) and domain generalization (DG) have emerged as a solution to the domain shift problem where the distribution of the source and target data is different. The task of DG is more challenging than DA as the target data is totally unseen during the training phase in DG scenarios. The current state-of-the-art employs adversarial techniques, however, these are rarely considered for the DG problem. Furthermore, these approaches do not consider correlation alignment which has been proven highly beneficial for minimizing domain discrepancy. In this paper, we propose a correlation-aware adversarial DA and DG framework where the features of the source and target data are minimized using correlation alignment along with adversarial learning. Incorporating the correlation alignment module along with adversarial learning helps to achieve a more domain agnostic model due to the improved ability to reduce domain discrepancy with unlabeled target data more effectively. Experiments on benchmark datasets serve as evidence that our proposed method yields improved state-of-the-art performance.
119 - Zeya Wang , Baoyu Jing , Yang Ni 2019
Adversarial training is a useful approach to promote the learning of transferable representations across the source and target domains, which has been widely applied for domain adaptation (DA) tasks based on deep neural networks. Until very recently, existing adversarial domain adaptation (ADA) methods ignore the useful information from the label space, which is an important factor accountable for the complicated data distributions associated with different semantic classes. Especially, the inter-class semantic relationships have been rarely considered and discussed in the current work of transfer learning. In this paper, we propose a novel relationship-aware adversarial domain adaptation (RADA) algorithm, which first utilizes a single multi-class domain discriminator to enforce the learning of inter-class dependency structure during domain-adversarial training and then aligns this structure with the inter-class dependencies that are characterized from training the label predictor on source domain. Specifically, we impose a regularization term to penalize the structure discrepancy between the inter-class dependencies respectively estimated from domain discriminator and label predictor. Through this alignment, our proposed method makes the adversarial domain adaptation aware of the class relationships. Empirical studies show that the incorporation of class relationships significantly improves the performance on benchmark datasets.
Domain adaptation (DA) aims to transfer knowledge from a label-rich and related domain (source domain) to a label-scare domain (target domain). Pseudo-labeling has recently been widely explored and used in DA. However, this line of research is still confined to the inaccuracy of pseudo-labels. In this paper, we reveal an interesting observation that the target samples belonging to the classes with larger domain shift are easier to be misclassified compared with the other classes. These classes are called hard class, which deteriorates the performance of DA and restricts the applications of DA. We propose a novel framework, called Hard Class Rectification Pseudo-labeling (HCRPL), to alleviate the hard class problem from two aspects. First, as is difficult to identify the target samples as hard class, we propose a simple yet effective scheme, named Adaptive Prediction Calibration (APC), to calibrate the predictions of the target samples according to the difficulty degree for each class. Second, we further consider that the predictions of target samples belonging to the hard class are vulnerable to perturbations. To prevent these samples to be misclassified easily, we introduce Temporal-Ensembling (TE) and Self-Ensembling (SE) to obtain consistent predictions. The proposed method is evaluated in both unsupervised domain adaptation (UDA) and semi-supervised domain adaptation (SSDA). The experimental results on several real-world cross-domain benchmarks, including ImageCLEF, Office-31 and Office-Home, substantiates the superiority of the proposed method.
Extensive Unsupervised Domain Adaptation (UDA) studies have shown great success in practice by learning transferable representations across a labeled source domain and an unlabeled target domain with deep models. However, previous works focus on improving the generalization ability of UDA models on clean examples without considering the adversarial robustness, which is crucial in real-world applications. Conventional adversarial training methods are not suitable for the adversarial robustness on the unlabeled target domain of UDA since they train models with adversarial examples generated by the supervised loss function. In this work, we leverage intermediate representations learned by multiple robust ImageNet models to improve the robustness of UDA models. Our method works by aligning the features of the UDA model with the robust features learned by ImageNet pre-trained models along with domain adaptation training. It utilizes both labeled and unlabeled domains and instills robustness without any adversarial intervention or label requirement during domain adaptation training. Experimental results show that our method significantly improves adversarial robustness compared to the baseline while keeping clean accuracy on various UDA benchmarks.
We propose an active learning approach for transferring representations across domains. Our approach, active adversarial domain adaptation (AADA), explores a duality between two related problems: adversarial domain alignment and importance sampling for adapting models across domains. The former uses a domain discriminative model to align domains, while the latter utilizes it to weigh samples to account for distribution shifts. Specifically, our importance weight promotes samples with large uncertainty in classification and diversity from labeled examples, thus serves as a sample selection scheme for active learning. We show that these two views can be unified in one framework for domain adaptation and transfer learning when the source domain has many labeled examples while the target domain does not. AADA provides significant improvements over fine-tuning based approaches and other sampling methods when the two domains are closely related. Results on challenging domain adaptation tasks, e.g., object detection, demonstrate that the advantage over baseline approaches is retained even after hundreds of examples being actively annotated.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا