Do you want to publish a course? Click here

What Was Written vs. Who Read It: News Media Profiling Using Text Analysis and Social Media Context

120   0   0.0 ( 0 )
 Added by Preslav Nakov
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Predicting the political bias and the factuality of reporting of entire news outlets are critical elements of media profiling, which is an understudied but an increasingly important research direction. The present level of proliferation of fake, biased, and propagandistic content online, has made it impossible to fact-check every single suspicious claim, either manually or automatically. Alternatively, we can profile entire news outlets and look for those that are likely to publish fake or biased content. This approach makes it possible to detect likely fake news the moment they are published, by simply checking the reliability of their source. From a practical perspective, political bias and factuality of reporting have a linguistic aspect but also a social context. Here, we study the impact of both, namely (i) what was written (i.e., what was published by the target medium, and how it describes itself on Twitter) vs. (ii) who read it (i.e., analyzing the readers of the target medium on Facebook, Twitter, and YouTube). We further study (iii) what was written about the target medium on Wikipedia. The evaluation results show that what was written matters most, and that putting all information sources together yields huge improvements over the current state-of-the-art.



rate research

Read More

The popularity of social media platforms such as Twitter has led to the proliferation of automated bots, creating both opportunities and challenges in information dissemination, user engagements, and quality of services. Past works on profiling bots had been focused largely on malicious bots, with the assumption that these bots should be removed. In this work, however, we find many bots that are benign, and propose a new, broader categorization of bots based on their behaviors. This includes broadcast, consumption, and spam bots. To facilitate comprehensive analyses of bots and how they compare to human accounts, we develop a systematic profiling framework that includes a rich set of features and classifier bank. We conduct extensive experiments to evaluate the performances of different classifiers under varying time windows, identify the key features of bots, and infer about bots in a larger Twitter population. Our analysis encompasses more than 159K bot and human (non-bot) accounts in Twitter. The results provide interesting insights on the behavioral traits of both benign and malicious bots.
Social media is currently one of the most important means of news communication. Since people are consuming a large fraction of their daily news through social media, most of the traditional news channels are using social media to catch the attention of users. Each news channel has its own strategies to attract more users. In this paper, we analyze how the news channels use sentiment to garner users attention in social media. We compare the sentiment of social media news posts of television, radio and print media, to show the differences in the ways these channels cover the news. We also analyze users reactions and opinion sentiment on news posts with different sentiments. We perform our experiments on a dataset extracted from Facebook Pages of five popular news channels. Our dataset contains 0.15 million news posts and 1.13 billion users reactions. The results of our experiments show that the sentiment of user opinion has a strong correlation with the sentiment of the news post and the type of information source. Our study also illustrates the differences among the social media news channels of different types of news sources.
The rise of fake news in the past decade has brought with it a host of consequences, from swaying opinions on elections to generating uncertainty during a pandemic. A majority of methods developed to combat disinformation either focus on fake news content or malicious actors who generate it. However, the virality of fake news is largely dependent upon the users who propagate it. A deeper understanding of these users can contribute to the development of a framework for identifying users who are likely to spread fake news. In this work, we study the characteristics and motivational factors of fake news spreaders on social media with input from psychological theories and behavioral studies. We then perform a series of experiments to determine if fake news spreaders can be found to exhibit different characteristics than other users. Further, we investigate our findings by testing whether the characteristics we observe amongst fake news spreaders in our experiments can be applied to the detection of fake news spreaders in a real social media environment.
We propose a novel framework for predicting the factuality of reporting of news media outlets by studying the user attention cycles in their YouTube channels. In particular, we design a rich set of features derived from the temporal evolution of the number of views, likes, dislikes, and comments for a video, which we then aggregate to the channel level. We develop and release a dataset for the task, containing observations of user attention on YouTube channels for 489 news media. Our experiments demonstrate both complementarity and sizable improvements over state-of-the-art textual representations.
We introduce initial groundwork for estimating suicide risk and mental health in a deep learning framework. By modeling multiple conditions, the system learns to make predictions about suicide risk and mental health at a low false positive rate. Conditions are modeled as tasks in a multi-task learning (MTL) framework, with gender prediction as an additional auxiliary task. We demonstrate the effectiveness of multi-task learning by comparison to a well-tuned single-task baseline with the same number of parameters. Our best MTL model predicts potential suicide attempt, as well as the presence of atypical mental health, with AUC > 0.8. We also find additional large improvements using multi-task learning on mental health tasks with limited training data.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا