Do you want to publish a course? Click here

ICE-GAN: Identity-aware and Capsule-Enhanced GAN with Graph-based Reasoning for Micro-Expression Recognition and Synthesis

124   0   0.0 ( 0 )
 Added by Jianhui Yu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Micro-expressions are reflections of peoples true feelings and motives, which attract an increasing number of researchers into the study of automatic facial micro-expression recognition. The short detection window, the subtle facial muscle movements, and the limited training samples make micro-expression recognition challenging. To this end, we propose a novel Identity-aware and Capsule-Enhanced Generative Adversarial Network with graph-based reasoning (ICE-GAN), introducing micro-expression synthesis as an auxiliary task to assist recognition. The generator produces synthetic faces with controllable micro-expressions and identity-aware features, whose long-ranged dependencies are captured through the graph reasoning module (GRM), and the discriminator detects the image authenticity and expression classes. Our ICE-GAN was evaluated on Micro-Expression Grand Challenge 2019 (MEGC2019) with a significant improvement (12.9%) over the winner and surpassed other state-of-the-art methods.



rate research

Read More

Facial expression recognition is a challenging task, arguably because of large intra-class variations and high inter-class similarities. The core drawback of the existing approaches is the lack of ability to discriminate the changes in appearance caused by emotions and identities. In this paper, we present a novel identity-enhanced network (IDEnNet) to eliminate the negative impact of identity factor and focus on recognizing facial expressions. Spatial fusion combined with self-constrained multi-task learning are adopted to jointly learn the expression representations and identity-related information. We evaluate our approach on three popular datasets, namely Oulu-CASIA, CK+ and MMI. IDEnNet improves the baseline consistently, and achieves the best or comparable state-of-the-art on all three datasets.
This paper targets to explore the inter-subject variations eliminated facial expression representation in the compressed video domain. Most of the previous methods process the RGB images of a sequence, while the off-the-shelf and valuable expression-related muscle movement already embedded in the compression format. In the up to two orders of magnitude compressed domain, we can explicitly infer the expression from the residual frames and possible to extract identity factors from the I frame with a pre-trained face recognition network. By enforcing the marginal independent of them, the expression feature is expected to be purer for the expression and be robust to identity shifts. We do not need the identity label or multiple expression samples from the same person for identity elimination. Moreover, when the apex frame is annotated in the dataset, the complementary constraint can be further added to regularize the feature-level game. In testing, only the compressed residual frames are required to achieve expression prediction. Our solution can achieve comparable or better performance than the recent decoded image based methods on the typical FER benchmarks with about 3$times$ faster inference with compressed data.
Micro-expression recognition (textbf{MER}) has attracted lots of researchers attention in a decade. However, occlusion will occur for MER in real-world scenarios. This paper deeply investigates an interesting but unexplored challenging issue in MER, ie, occlusion MER. First, to research MER under real-world occlusion, synthetic occluded micro-expression databases are created by using various mask for the community. Second, to suppress the influence of occlusion, a underline{R}egion-inspired underline{R}elation underline{R}easoning underline{N}etwork (textbf{RRRN}) is proposed to model relations between various facial regions. RRRN consists of a backbone network, the Region-Inspired (textbf{RI}) module and Relation Reasoning (textbf{RR}) module. More specifically, the backbone network aims at extracting feature representations from different facial regions, RI module computing an adaptive weight from the region itself based on attention mechanism with respect to the unobstructedness and importance for suppressing the influence of occlusion, and RR module exploiting the progressive interactions among these regions by performing graph convolutions. Experiments are conducted on handout-database evaluation and composite database evaluation tasks of MEGC 2018 protocol. Experimental results show that RRRN can significantly explore the importance of facial regions and capture the cooperative complementary relationship of facial regions for MER. The results also demonstrate RRRN outperforms the state-of-the-art approaches, especially on occlusion, and RRRN acts more robust to occlusion.
We present Poly-GAN, a novel conditional GAN architecture that is motivated by Fashion Synthesis, an application where garments are automatically placed on images of human models at an arbitrary pose. Poly-GAN allows conditioning on multiple inputs and is suitable for many tasks, including image alignment, image stitching, and inpainting. Existing methods have a similar pipeline where three different networks are used to first align garments with the human pose, then perform stitching of the aligned garment and finally refine the results. Poly-GAN is the first instance where a common architecture is used to perform all three tasks. Our novel architecture enforces the conditions at all layers of the encoder and utilizes skip connections from the coarse layers of the encoder to the respective layers of the decoder. Poly-GAN is able to perform a spatial transformation of the garment based on the RGB skeleton of the model at an arbitrary pose. Additionally, Poly-GAN can perform image stitching, regardless of the garment orientation, and inpainting on the garment mask when it contains irregular holes. Our system achieves state-of-the-art quantitative results on Structural Similarity Index metric and Inception Score metric using the DeepFashion dataset.
Micro-expression, for its high objectivity in emotion detection, has emerged to be a promising modality in affective computing. Recently, deep learning methods have been successfully introduced into the micro-expression recognition area. Whilst the higher recognition accuracy achieved, substantial challenges in micro-expression recognition remain. The existence of micro expression in small-local areas on face and limited size of available databases still constrain the recognition accuracy on such emotional facial behavior. In this work, to tackle such challenges, we propose a novel attention mechanism called micro-attention cooperating with residual network. Micro-attention enables the network to learn to focus on facial areas of interest covering different action units. Moreover, coping with small datasets, the micro-attention is designed without adding noticeable parameters while a simple yet efficient transfer learning approach is together utilized to alleviate the overfitting risk. With extensive experimental evaluations on three benchmarks (CASMEII, SAMM and SMIC) and post-hoc feature visualizations, we demonstrate the effectiveness of the proposed micro-attention and push the boundary of automatic recognition of micro-expression.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا