No Arabic abstract
The last few decades have seen significant breakthroughs in the fields of deep learning and quantum computing. Research at the junction of the two fields has garnered an increasing amount of interest, which has led to the development of quantum deep learning and quantum-inspired deep learning techniques in recent times. In this work, we present an overview of advances in the intersection of quantum computing and deep learning by discussing the technical contributions, strengths and similarities of various research works in this domain. To this end, we review and summarise the different schemes proposed to model quantum neural networks (QNNs) and other variants like quantum convolutional networks (QCNNs). We also briefly describe the recent progress in quantum inspired classic deep learning algorithms and their applications to natural language processing.
Computer audition (CA) has been demonstrated to be efficient in healthcare domains for speech-affecting disorders (e.g., autism spectrum, depression, or Parkinsons disease) and body sound-affecting abnormalities (e. g., abnormal bowel sounds, heart murmurs, or snore sounds). Nevertheless, CA has been underestimated in the considered data-driven technologies for fighting the COVID-19 pandemic caused by the SARS-CoV-2 coronavirus. In this light, summarise the most recent advances in CA for COVID-19 speech and/or sound analysis. While the milestones achieved are encouraging, there are yet not any solid conclusions that can be made. This comes mostly, as data is still sparse, often not sufficiently validated and lacking in systematic comparison with related diseases that affect the respiratory system. In particular, CA-based methods cannot be a standalone screening tool for SARS-CoV-2. We hope this brief overview can provide a good guidance and attract more attention from a broader artificial intelligence community.
Modern deep learning has enabled unprecedented achievements in various domains. Nonetheless, employment of machine learning for wave function representations is focused on more traditional architectures such as restricted Boltzmann machines (RBMs) and fully-connected neural networks. In this letter, we establish that contemporary deep learning architectures, in the form of deep convolutional and recurrent networks, can efficiently represent highly entangled quantum systems. By constructing Tensor Network equivalents of these architectures, we identify an inherent reuse of information in the network operation as a key trait which distinguishes them from standard Tensor Network based representations, and which enhances their entanglement capacity. Our results show that such architectures can support volume-law entanglement scaling, polynomially more efficiently than presently employed RBMs. Thus, beyond a quantification of the entanglement capacity of leading deep learning architectures, our analysis formally motivates a shift of trending neural-network based wave function representations closer to the state-of-the-art in machine learning.
Object detection is a fundamental visual recognition problem in computer vision and has been widely studied in the past decades. Visual object detection aims to find objects of certain target classes with precise localization in a given image and assign each object instance a corresponding class label. Due to the tremendous successes of deep learning based image classification, object detection techniques using deep learning have been actively studied in recent years. In this paper, we give a comprehensive survey of recent advances in visual object detection with deep learning. By reviewing a large body of recent related work in literature, we systematically analyze the existing object detection frameworks and organize the survey into three major parts: (i) detection components, (ii) learning strategies, and (iii) applications & benchmarks. In the survey, we cover a variety of factors affecting the detection performance in detail, such as detector architectures, feature learning, proposal generation, sampling strategies, etc. Finally, we discuss several future directions to facilitate and spur future research for visual object detection with deep learning. Keywords: Object Detection, Deep Learning, Deep Convolutional Neural Networks
Quantum cryptography is arguably the fastest growing area in quantum information science. Novel theoretical protocols are designed on a regular basis, security proofs are constantly improving, and experiments are gradually moving from proof-of-principle lab demonstrations to in-field implementations and technological prototypes. In this review, we provide both a general introduction and a state of the art description of the recent advances in the field, both theoretically and experimentally. We start by reviewing protocols of quantum key distribution based on discrete variable systems. Next we consider aspects of device independence, satellite challenges, and high rate protocols based on continuous variable systems. We will then discuss the ultimate limits of point-to-point private communications and how quantum repeaters and networks may overcome these restrictions. Finally, we will discuss some aspects of quantum cryptography beyond standard quantum key distribution, including quantum data locking and quantum digital signatures.
In this survey, various generalisations of Glauber-Sudarshan coherent states are described in a unified way, with their statistical properties and their possible role in non-standard quantisations of the classical electromagnetic field. Some statistical photon-counting aspects of Perelomov SU(2) and SU(1,1) coherent states are emphasized.