Do you want to publish a course? Click here

MBN Explorer atomistic simulations of 855 MeV electron propagation and radiation emission in oriented silicon bent crystal: theory versus experiment

54   0   0.0 ( 0 )
 Added by Viktar Haurylavets
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The method of relativistic molecular dynamics is applied for accurate computational modelling and numerical analysis of the channelling phenomena for 855 MeV electrons in bent oriented silicon (111) crystal. Special attention is devoted to the transition from the axial channelling regime to the planar one in the course of the crystal rotation with respect to the incident beam. Distribution in the deflection angle of electrons and spectral distribution of the radiation emitted are analysed in detail. The results of calculations are compared with the experimental data collected at the MAinzer MIctrotron (MAMI) facility.



rate research

Read More

Features of forward diffracted Parametric X-Radiation (PXR) were investigated at experiments with the 855 MeV electron beam of the Mainz Microtron MAMI employing a 410 micrometer thick tungsten single crystal. Virtual photons from the electron field are diffracted by the (10-1) plane at a Bragg angle of 3.977 degree. Forward emitted radiation was analyzed at an energy of 40 keV with the (111) lattice planes of a flat silicon single crystal in Bragg geometry. Clear peak structures were observed in an angular scan of the tungsten single crystal. The results were analyzed with a model which describes forward diffracted PXR under real experimental conditions. The experiments show that forward diffracted PXR may be employed to diagnose bending radii of lattice planes in large area single crystals.
A periodically bent Si crystal is shown to efficiently serve for producing highly monochromatic radiation in a gamma-ray energy spectral range. A short-period small-amplitude bending yields narrow undulator-type spectral peaks in radiation from multi-GeV electrons and positrons channeling through the crystal. Benchmark theoretical results on the undulator are obtained by simulations of the channeling with a full atomistic approach to the projectile-crystal interactions over the macroscopic propagation distances. The simulations are facilitated by employing the MBN Explorer package for molecular dynamics calculations on the meso- bio- and nano-scales. The radiation from the ultra-relativistic channeling projectiles is computed within the quasi-classical formalism. The effects due to the quantum recoil are shown to be significantly prominent in the gamma-ray undulator radiation.
An investigation on stochastic deflection of high-energy charged particles in a bent crystal was carried out. In particular, we investigated the deflection efficiency under axial confinement of both positively and negatively charged particles as a function of the crystal orientation, the choice of the bending plane, and of the charge sign. Analytic estimations and numerical simulations were compared with dedicated experiments at the H4 secondary beam line of SPS North Area, with 120 GeV/$c$ electrons and positrons. In the work presented in this article, the optimal orientations of the plane of bending of the crystal, which allow deflecting the largest number of charged particles using a bent crystal in axial orientation, were found.
In this letter we describe a new micro-bunching instability occurring in charged particle beams propagating along a straight trajectory: based on the dynamics we named it a Plasma Cascade Instability.
The usage of a Crystalline Undulator (CU) has been identified as a promising solution for generating powerful and monochromatic $gamma$-rays. A CU was fabricated at SSL through the grooving method, i.e., by the manufacturing of a series of periodical grooves on the major surfaces of a crystal. The CU was extensively characterized both morphologically via optical interferometry at SSL and structurally via X-ray diffraction at ESRF. Then, it was finally tested for channeling with a 400 GeV/c proton beam at CERN. The experimental results were compared to Monte Carlo simulations. Evidence of planar channeling in the CU was firmly observed. Finally, the emission spectrum of the positron beam interacting with the CU was simulated for possible usage in currently existing facilities.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا