Do you want to publish a course? Click here

A Collaborative Filtering Approach for the Automatic Tuning of Compiler Optimisations

105   0   0.0 ( 0 )
 Added by Stefano Cereda
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Selecting the right compiler optimisations has a severe impact on programs performance. Still, the available optimisations keep increasing, and their effect depends on the specific program, making the task human intractable. Researchers proposed several techniques to search in the space of compiler optimisations. Some approaches focus on finding better search algorithms, while others try to speed up the search by leveraging previously collected knowledge. The possibility to effectively reuse previous compilation results inspired us toward the investigation of techniques derived from the Recommender Systems field. The proposed approach exploits previously collected knowledge and improves its characterisation over time. Differently from current state-of-the-art solutions, our approach is not based on performance counters but relies on Reaction Matching, an algorithm able to characterise programs looking at how they react to different optimisation sets. The proposed approach has been validated using two widely used benchmark suites, cBench and PolyBench, including 54 different programs. Our solution, on average, extracted 90% of the available performance improvement 10 iterations before current state-of-the-art solutions, which corresponds to 40% fewer compilations and performance tests to perform.



rate research

Read More

Many hardware vendors have introduced specialized deep neural networks (DNN) accelerators owing to their superior performance and efficiency. As such, how to generate and optimize the code for the hardware accelerator becomes an important yet less explored problem. In this paper, we perform the compiler-stage optimization study using a novel and representative Cambricon DNN accelerator and demonstrate that the code optimization knobs play an important role in unleashing the potential of hardware computational horsepower. However, even only two studied code optimization knobs, namely the number of cores and layer fusion scheme, present an enormous search space that prevents the naive brute-force search. This work introduces a joint, auto-tuning optimization framework to address this challenge. We first use a set of synthesized DNN layers to study the interplay between the hardware performance and layer characteristics. Based on the insights, we extract the operation count and feature map channel size as each layers characteristics and derive a joint optimization strategy to decide the performance-optimal core number and fusion scheme. We evaluate the performance of the proposed approach using a set of representative DNN models and show that it achieves the minimal of 3.6x and the maximal of 7.9x performance speedup compared to no optimization baseline. We also show that the achieved speedup is close to the oracle case that is based on a reduced brute-force search but with much less search time.
OpenCL for FPGA enables developers to design FPGAs using a programming model similar for processors. Recent works have shown that code optimization at the OpenCL level is important to achieve high computational efficiency. However, existing works either focus primarily on optimizing single kernels or solely depend on channels to design multi-kernel pipelines. In this paper, we propose a source-to-source compiler framework, MKPipe, for optimizing multi-kernel workloads in OpenCL for FPGA. Besides channels, we propose new schemes to enable multi-kernel pipelines. Our optimizing compiler employs a systematic approach to explore the tradeoffs of these optimizations methods. To enable more efficient overlapping between kernel execution, we also propose a novel workitem/workgroup-id remapping technique. Furthermore, we propose new algorithms for throughput balancing and resource balancing to tune the optimizations upon individual kernels in the multi-kernel workloads. Our results show that our compiler-optimized multi-kernels achieve up to 3.6x (1.4x on average) speedup over the baseline, in which the kernels have already been optimized individually.
This paper proposes CF-NADE, a neural autoregressive architecture for collaborative filtering (CF) tasks, which is inspired by the Restricted Boltzmann Machine (RBM) based CF model and the Neural Autoregressive Distribution Estimator (NADE). We first describe the basic CF-NADE model for CF tasks. Then we propose to improve the model by sharing parameters between different ratings. A factored version of CF-NADE is also proposed for better scalability. Furthermore, we take the ordinal nature of the preferences into consideration and propose an ordinal cost to optimize CF-NADE, which shows superior performance. Finally, CF-NADE can be extended to a deep model, with only moderately increased computational complexity. Experimental results show that CF-NADE with a single hidden layer beats all previous state-of-the-art methods on MovieLens 1M, MovieLens 10M, and Netflix datasets, and adding more hidden layers can further improve the performance.
Graphical models have been widely applied in solving distributed inference problems in sensor networks. In this paper, the problem of coordinating a network of sensors to train a unique ensemble estimator under communication constraints is discussed. The information structure of graphical models with specific potential functions is employed, and this thus converts the collaborative training task into a problem of local training plus global inference. Two important classes of algorithms of graphical model inference, message-passing algorithm and sampling algorithm, are employed to tackle low-dimensional, parametrized and high-dimensional, non-parametrized problems respectively. The efficacy of this approach is demonstrated by concrete examples.
247 - Mingzhen Li , Yi Liu , Xiaoyan Liu 2020
The difficulty of deploying various deep learning (DL) models on diverse DL hardware has boosted the research and development of DL compilers in the community. Several DL compilers have been proposed from both industry and academia such as Tensorflow XLA and TVM. Similarly, the DL compilers take the DL models described in different DL frameworks as input, and then generate optimized codes for diverse DL hardware as output. However, none of the existing survey has analyzed the unique design architecture of the DL compilers comprehensively. In this paper, we perform a comprehensive survey of existing DL compilers by dissecting the commonly adopted design in details, with emphasis on the DL oriented multi-level IRs, and frontend/backend optimizations. Specifically, we provide a comprehensive comparison among existing DL compilers from various aspects. In addition, we present detailed analysis on the design of multi-level IRs and illustrate the commonly adopted optimization techniques. Finally, several insights are highlighted as the potential research directions of DL compiler. This is the first survey paper focusing on the design architecture of DL compilers, which we hope can pave the road for future research towards DL compiler.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا