Do you want to publish a course? Click here

The overall mortality caused by COVID-19 in the European region is highly associated with demographic composition: A spatial regression-based approach

160   0   0.0 ( 0 )
 Added by Srikanta Sannigrahi
 Publication date 2020
  fields Biology
and research's language is English




Ask ChatGPT about the research

The demographic factors have a substantial impact on the overall casualties caused by the COVID-19. In this study, the spatial association between the key demographic variables and COVID-19 cases and deaths were analyzed using the spatial regression models. Total 13 (for COVID-19 case factor) and 8 (for COVID-19 death factor) key variables were considered for the modelling. Total five spatial regression models such as Geographically weighted regression (GWR), Spatial Error Model (SEM), Spatial Lag Model (SLM), Spatial Error_Lag model (SEM_SLM), and Ordinary Least Square (OLS) were performed for the spatial modelling and mapping of model estimates. The local R2 values, which suggesting the influences of the selected demographic variables on overall casualties caused by COVID-19, was found highest in Italy and the UK. The moderate local R2 was observed for France, Belgium, Netherlands, Ireland, Denmark, Norway, Sweden, Poland, Slovakia, and Romania. The lowest local R2 value for COVID-19 cases was accounted for Latvia and Lithuania. Among the 13 variables, the highest local R2 was calculated for total population (R2 = 0.92), followed by death crude death rate (R2 = 0.9), long time illness (R2 = 0.84), population with age >80 (R2 = 0.59), employment (R2 = 0.46), life expectancy at 65 (R2 = 0.34), crude birth rate (R2 = 0.31), life expectancy (R2 = 0.31), Population with age 65-80 (R2 = 0.29), Population with age 15-24 (R2 = 0.27), Population with age 25-49 (R2 = 0.27), Population with age 0-14 (R2 = 0.23), and Population with age 50-65 (R2 = 0.23), respectively.



rate research

Read More

183 - Francesca Bassi 2020
During the current Covid-19 pandemic in Italy, official data are collected with medical swabs following a pure convenience criterion which, at least in an early phase, has privileged the exam of patients showing evident symptoms. However, there are evidences of a very high proportion of asymptomatic patients (e. g. Aguilar et al., 2020; Chugthai et al, 2020; Li, et al., 2020; Mizumoto et al., 2020a, 2020b and Yelin et al., 2020). In this situation, in order to estimate the real number of infected (and to estimate the lethality rate), it should be necessary to run a properly designed sample survey through which it would be possible to calculate the probability of inclusion and hence draw sound probabilistic inference. Some researchers proposed estimates of the total prevalence based on various approaches, including epidemiologic models, time series and the analysis of data collected in countries that faced the epidemic in earlier time (Brogi et al., 2020). In this paper, we propose to estimate the prevalence of Covid-19 in Italy by reweighting the available official data published by the Istituto Superiore di Sanit`a so as to obtain a more representative sample of the Italian population. Reweighting is a procedure commonly used to artificially modify the sample composition so as to obtain a distribution which is more similar to the population (Valliant et al., 2018). In this paper, we will use post-stratification of the official data, in order to derive the weights necessary for reweighting them using age and gender as post-stratification variables thus obtaining more reliable estimation of prevalence and lethality.
The COVID-19 pandemic, caused by the coronavirus SARS-CoV-2, has led to a wide range of non-pharmaceutical interventions being implemented around the world to curb transmission. However, the economic and social costs of some of these measures, especially lockdowns, has been high. An alternative and widely discussed public health strategy for the COVID-19 pandemic would have been to shield those most vulnerable to COVID-19, while allowing infection to spread among lower risk individuals with the aim of reaching herd immunity. Here we retrospectively explore the effectiveness of this strategy, showing that even under the unrealistic assumption of perfect shielding, hospitals would have been rapidly overwhelmed with many avoidable deaths among lower risk individuals. Crucially, even a small (20%) reduction in the effectiveness of shielding would have likely led to a large increase (>150%) in the number of deaths compared to perfect shielding. Our findings demonstrate that shielding the vulnerable while allowing infections to spread among the wider population would not have been a viable public health strategy for COVID-19, and is unlikely to be effective for future pandemics.
119 - Samarth Bhatia 2021
As the second wave in India mitigates, COVID-19 has now infected about 29 million patients countrywide, leading to more than 350 thousand people dead. As the infections surged, the strain on the medical infrastructure in the country became apparent. While the country vaccinates its population, opening up the economy may lead to an increase in infection rates. In this scenario, it is essential to effectively utilize the limited hospital resources by an informed patient triaging system based on clinical parameters. Here, we present two interpretable machine learning models predicting the clinical outcomes, severity, and mortality, of the patients based on routine non-invasive surveillance of blood parameters from one of the largest cohorts of Indian patients at the day of admission. Patient severity and mortality prediction models achieved 86.3% and 88.06% accuracy, respectively, with an AUC-ROC of 0.91 and 0.92. We have integrated both the models in a user-friendly web app calculator, https://triage-COVID-19.herokuapp.com/, to showcase the potential deployment of such efforts at scale.
Background: Providing appropriate care for people suffering from COVID-19, the disease caused by the pandemic SARS-CoV-2 virus is a significant global challenge. Many individuals who become infected have pre-existing conditions that may interact with COVID-19 to increase symptom severity and mortality risk. COVID-19 patient comorbidities are likely to be informative about individual risk of severe illness and mortality. Accurately determining how comorbidities are associated with severe symptoms and mortality would thus greatly assist in COVID-19 care planning and provision. Methods: To assess the interaction of patient comorbidities with COVID-19 severity and mortality we performed a meta-analysis of the published global literature, and machine learning predictive analysis using an aggregated COVID-19 global dataset. Results: Our meta-analysis identified chronic obstructive pulmonary disease (COPD), cerebrovascular disease (CEVD), cardiovascular disease (CVD), type 2 diabetes, malignancy, and hypertension as most significantly associated with COVID-19 severity in the current published literature. Machine learning classification using novel aggregated cohort data similarly found COPD, CVD, CKD, type 2 diabetes, malignancy and hypertension, as well as asthma, as the most significant features for classifying those deceased versus those who survived COVID-19. While age and gender were the most significant predictor of mortality, in terms of symptom-comorbidity combinations, it was observed that Pneumonia-Hypertension, Pneumonia-Diabetes and Acute Respiratory Distress Syndrome (ARDS)-Hypertension showed the most significant effects on COVID-19 mortality. Conclusions: These results highlight patient cohorts most at risk of COVID-19 related severe morbidity and mortality which have implications for prioritization of hospital resources.
Demographic (shot) noise in population dynamics scales with the square root of the population size. This process is very important, as it yields an absorbing state at zero field, but simulating it, especially on spatial domains, is a non-trivial task. Here we compare the results of two operator-splitting techniques suggested for simulating the corresponding Langevin equation, one by Pechenik and Levine (PL) and the other by Dornic, Chate and Mu~noz (DCM). We identify an anomalously strong bias toward the active phase in the numerical scheme of DCM, a bias which is not present in the alternative scheme of PL. This bias strongly distorts the phase diagram determined via the DCM procedure for the range of time-steps used in such simulations. We pinpoint the underlying cause in the inclusion of the diffusion, treated as an on-site decay with a constant external source, in the stochastic part of the algorithm. Treating the diffusion deterministically is shown to remove this unwanted bias while keeping the simulation algorithm stable, thus a hybrid numerical technique, in which the DCM approach to diffusion is applied but the diffusion is simulated deterministically, appears to be optimal.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا