Planar nanophotonic structures enable broadband, near-unity coupling of emission from quantum dots embedded within, thereby realizing ideal singe-photon sources. The efficiency and coherence of the single-photon source is limited by charge noise, which results in the broadening of the emission spectrum.We report suppression of the noise by fabricating photonic crystal waveguides in a gallium arsenide membrane containing quantum dots embedded in a $p$-$i$-$n$ diode. Local electrical contacts in the vicinity of the waveguides minimize the leakage current and allow fast electrical control ($approx$4 MHz bandwidth) of the quantum dot resonances. Resonant linewidth measurements of $79$ quantum dots coupled to the photonic crystal waveguides exhibit near transform-limited emission over a 6 nm wide range of emission wavelengths. Importantly, the local electrical contacts allow independent tuning of multiple quantum dots on the same chip, which together with the transform-limited emission are key components in realizing multiemitter-based quantum information processing.