Do you want to publish a course? Click here

Graphic Lattices and Matrix Lattices Of Topological Coding

109   0   0.0 ( 0 )
 Added by Bing Yao
 Publication date 2020
and research's language is English
 Authors Bing Yao




Ask ChatGPT about the research

Lattice-based Cryptography is considered to have the characteristics of classical computers and quantum attack resistance. We will design various graphic lattices and matrix lattices based on knowledge of graph theory and topological coding, since many problems of graph theory can be expressed or illustrated by (colored) star-graphic lattices. A new pair of the leaf-splitting operation and the leaf-coinciding operation will be introduced, and we combine graph colorings and graph labellings to design particular proper total colorings as tools to build up various graphic lattices, graph homomorphism lattice, graphic group lattices and Topcode-matrix lattices. Graphic group lattices and (directed) Topcode-matrix lattices enable us to build up connections between traditional lattices and graphic lattices. We present mathematical problems encountered in researching graphic lattices, some problems are: Tree topological authentication, Decompose graphs into Hanzi-graphs, Number String Decomposition Problem, $(p,s)$-gracefully total numbers.



rate research

Read More

104 - Bing Yao , Hongyu Wang , Xia Liu 2020
Lattice theory has been believed to resist classical computers and quantum computers. Since there are connections between traditional lattices and graphic lattices, it is meaningful to research graphic lattices. We define the so-called ice-flower systems by our uncolored or colored leaf-splitting and leaf-coinciding operations. These ice-flower systems enable us to construct several star-graphic lattices. We use our star-graphic lattices to express some well-known results of graph theory and compute the number of elements of a particular star-graphic lattice. For more researching ice-flower systems and star-graphic lattices we propose Decomposition Number String Problem, finding strongly colored uniform ice-flower systems and connecting our star-graphic lattices with traditional lattices.
New series of $2^{2m}$-dimensional universally strongly perfect lattices $Lambda_I $ and $Gamma_J $ are constructed with $$2BW_{2m} ^{#} subseteq Gamma _J subseteq BW_{2m} subseteq Lambda _I subseteq BW _{2m}^{#} .$$ The lattices are found by restricting the spin representations of the automorphism group of the Barnes-Wall lattice to its subgroup ${mathcal U}_m:={mathcal C}_m (4^H_{bf 1}) $. The group ${mathcal U}_m$ is the Clifford-Weil group associated to the Hermitian self-dual codes over ${bf F} _4$ containing ${bf 1}$, so the ring of polynomial invariants of ${mathcal U}_m$ is spanned by the genus-$m$ complete weight enumerators of such codes. This allows us to show that all the ${mathcal U}_m$ invariant lattices are universally strongly perfect. We introduce a new construction, $D^{(cyc)}$ for chains of (extended) cyclic codes to obtain (bounds on) the minimum of the new lattices.
83 - Bing Yao , Hongyu Wang 2020
Lattice-based cryptography is not only for thwarting future quantum computers, and is also the basis of Fully Homomorphic Encryption. Motivated from the advantage of graph homomorphisms we combine graph homomorphisms with graph total colorings together for designing new types of graph homomorphisms: totally-colored graph homomorphisms, graphic-lattice homomorphisms from sets to sets, every-zero graphic group homomorphisms from sets to sets. Our graph-homomorphism lattices are made up by graph homomorphisms. These new homomorphisms induce some problems of graph theory, for example, Number String Decomposition and Graph Homomorphism Problem.
162 - Sihuang Hu , Gabriele Nebe 2019
We classify the dual strongly perfect lattices in dimension 16. There are four pairs of such lattices, the famous Barnes-Wall lattice $Lambda _{16}$, the extremal 5-modular lattice $N_{16}$, the odd Barnes-Wall lattice $O_{16}$ and its dual, and one pair of new lattices $Gamma _{16}$ and its dual. The latter pair belongs to a new infinite series of dual strongly perfect lattices, the sandwiched Barnes-Wall lattices, described by the authors in a previous paper. An updated table of all known strongly perfect lattices up to dimension 26 is available in the catalogue of lattices.
67 - Hiroko Kamei , Haibo Ruan 2020
For a regular coupled cell network, synchrony subspaces are the polydiagonal subspaces that are invariant under the network adjacency matrix. The complete lattice of synchrony subspaces of an $n$-cell regular network can be seen as an intersection of the partition lattice of $n$ elements and a lattice of invariant subspaces of the associated adjacency matrix. We assign integer tuples with synchrony subspaces, and use them for identifying equivalent synchrony subspaces to be merged. Based on this equivalence, the initial lattice of synchrony subspaces can be reduced to a lattice of synchrony subspaces which corresponds to a simple eigenvalue case discussed in our previous work. The result is a reduced lattice of synchrony subspaces, which affords a well-defined non-negative integer index that leads to bifurcation analysis in regular coupled cell networks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا