We show that in superfluids with fermionic imbalance and uniform ground state, there are stable solitons. These solutions are formed of radial density modulations resulting in nodal rings. We demonstrate that these solitons exhibit nontrivial soliton-soliton and soliton-vortex interactions and can form complicated bound states in the form of soliton sacks. In a phase-modulating (Fulde-Ferrell) background, we find different solitonic states, in the form of stable vortex-antivortex pairs.