Do you want to publish a course? Click here

Machine Learning on Graphs: A Model and Comprehensive Taxonomy

147   0   0.0 ( 0 )
 Added by Ines Chami
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

There has been a surge of recent interest in learning representations for graph-structured data. Graph representation learning methods have generally fallen into three main categories, based on the availability of labeled data. The first, network embedding (such as shallow graph embedding or graph auto-encoders), focuses on learning unsupervised representations of relational structure. The second, graph regularized neural networks, leverages graphs to augment neural network losses with a regularization objective for semi-supervised learning. The third, graph neural networks, aims to learn differentiable functions over discrete topologies with arbitrary structure. However, despite the popularity of these areas there has been surprisingly little work on unifying the three paradigms. Here, we aim to bridge the gap between graph neural networks, network embedding and graph regularization models. We propose a comprehensive taxonomy of representation learning methods for graph-structured data, aiming to unify several disparate bodies of work. Specifically, we propose a Graph Encoder Decoder Model (GRAPHEDM), which generalizes popular algorithms for semi-supervised learning on graphs (e.g. GraphSage, Graph Convolutional Networks, Graph Attention Networks), and unsupervised learning of graph representations (e.g. DeepWalk, node2vec, etc) into a single consistent approach. To illustrate the generality of this approach, we fit over thirty existing methods into this framework. We believe that this unifying view both provides a solid foundation for understanding the intuition behind these methods, and enables future research in the area.



rate research

Read More

Our experience of the world is multimodal - we see objects, hear sounds, feel texture, smell odors, and taste flavors. Modality refers to the way in which something happens or is experienced and a research problem is characterized as multimodal when it includes multiple such modalities. In order for Artificial Intelligence to make progress in understanding the world around us, it needs to be able to interpret such multimodal signals together. Multimodal machine learning aims to build models that can process and relate information from multiple modalities. It is a vibrant multi-disciplinary field of increasing importance and with extraordinary potential. Instead of focusing on specific multimodal applications, this paper surveys the recent advances in multimodal machine learning itself and presents them in a common taxonomy. We go beyond the typical early and late fusion categorization and identify broader challenges that are faced by multimodal machine learning, namely: representation, translation, alignment, fusion, and co-learning. This new taxonomy will enable researchers to better understand the state of the field and identify directions for future research.
Containerization is a lightweight application virtualization technology, providing high environmental consistency, operating system distribution portability, and resource isolation. Existing mainstream cloud service providers have prevalently adopted container technologies in their distributed system infrastructures for automated application management. To handle the automation of deployment, maintenance, autoscaling, and networking of containerized applications, container orchestration is proposed as an essential research problem. However, the highly dynamic and diverse feature of cloud workloads and environments considerably raises the complexity of orchestration mechanisms. Machine learning algorithms are accordingly employed by container orchestration systems for behavior modelling and prediction of multi-dimensional performance metrics. Such insights could further improve the quality of resource provisioning decisions in response to the changing workloads under complex environments. In this paper, we present a comprehensive literature review of existing machine learning-based container orchestration approaches. Detailed taxonomies are proposed to classify the current researches by their common features. Moreover, the evolution of machine learning-based container orchestration technologies from the year 2016 to 2021 has been designed based on objectives and metrics. A comparative analysis of the reviewed techniques is conducted according to the proposed taxonomies, with emphasis on their key characteristics. Finally, various open research challenges and potential future directions are highlighted.
We introduce a convolutional neural network that operates directly on graphs. These networks allow end-to-end learning of prediction pipelines whose inputs are graphs of arbitrary size and shape. The architecture we present generalizes standard molecular feature extraction methods based on circular fingerprints. We show that these data-driven features are more interpretable, and have better predictive performance on a variety of tasks.
104 - Yucen Luo , Jun Zhu , Mengxi Li 2017
The recently proposed self-ensembling methods have achieved promising results in deep semi-supervised learning, which penalize inconsistent predictions of unlabeled data under different perturbations. However, they only consider adding perturbations to each single data point, while ignoring the connections between data samples. In this paper, we propose a novel method, called Smooth Neighbors on Teacher Graphs (SNTG). In SNTG, a graph is constructed based on the predictions of the teacher model, i.e., the implicit self-ensemble of models. Then the graph serves as a similarity measure with respect to which the representations of similar neighboring points are learned to be smooth on the low-dimensional manifold. We achieve state-of-the-art results on semi-supervised learning benchmarks. The error rates are 9.89%, 3.99% for CIFAR-10 with 4000 labels, SVHN with 500 labels, respectively. In particular, the improvements are significant when the labels are fewer. For the non-augmented MNIST with only 20 labels, the error rate is reduced from previous 4.81% to 1.36%. Our method also shows robustness to noisy labels.
111 - Jiawei Zhang 2020
The recent GRAPH-BERT model introduces a new approach to learning graph representations merely based on the attention mechanism. GRAPH-BERT provides an opportunity for transferring pre-trained models and learned graph representations across different tasks within the same graph dataset. In this paper, we will further investigate the graph-to-graph transfer of a universal GRAPH-BERT for graph representation learning across different graph datasets, and our proposed model is also referred to as the G5 for simplicity. Many challenges exist in learning G5 to adapt the distinct input and output configurations for each graph data source, as well as the information distributions differences. G5 introduces a pluggable model architecture: (a) each data source will be pre-processed with a unique input representation learning component; (b) each output application task will also have a specific functional component; and (c) all such diverse input and output components will all be conjuncted with a universal GRAPH-BERT core component via an input size unification layer and an output representation fusion layer, respectively. The G5 model removes the last obstacle for cross-graph representation learning and transfer. For the graph sources with very sparse training data, the G5 model pre-trained on other graphs can still be utilized for representation learning with necessary fine-tuning. Whats more, the architecture of G5 also allows us to learn a supervised functional classifier for data sources without any training data at all. Such a problem is also named as the Apocalypse Learning task in this paper. Two different label reasoning strategies, i.e., Cross-Source Classification Consistency Maximization (CCCM) and Cross-Source Dynamic Routing (CDR), are introduced in this paper to address the problem.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا