Chiral Induced Spin Selectivity as a Spontaneous Intertwined Order


Abstract in English

Chiral induced spin selectivity (CISS) describes efficient spin filtering by chiral molecules. This phenomenon has led to nanoscale manipulation of quantum spins with promising applications to spintronics and quantum computing, since its discovery nearly two decades ago. However, its underlying mechanism still remains mysterious for the required spin-orbit interaction (SOI) strength is unexpectedly large. Here we report a multi-orbital theory for CISS, where an effective SOI emerges from spontaneous formation of electron-hole pairing caused by many-body correlation. This mechanism produces a strong SOI to the order of tens of milielectronvolts which could support the large spin polarization observed in CISS at room temperature. One central ingredient of our theory is the Wannier functions of the valence and conduction bands correspond respectively to one- and two-dimensional representation of the spatial rotation symmetry around the molecule elongation direction. The induced SOI strength is found to decrease when the band gap increases. Our theory may provide important guidance for searching other molecules with CISS effects.

Download