Do you want to publish a course? Click here

Phase diagram of helically imbalanced QCD matter

105   0   0.0 ( 0 )
 Added by Maxim Chernodub
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We discuss the influence of a helicity imbalance on the phase diagram of dense QCD at finite temperature. We argue that the helical chemical potential is a thermodynamically relevant quantity in theories with the mass gap generation. Using the linear sigma model coupled to quarks, we show that the presence of the helical density substantially affects the phase diagram of dense quark matter. A moderate helical density makes the chiral phase transition softer while shifting the critical endpoint towards lower temperatures and higher baryon chemical potentials. As the helical density increases, the segment of the first-order transition disappears, and the chiral transition becomes a soft crossover. At even higher helical chemical potentials, the first-order transition reappears again at the zero-density finite-temperature transition and extends into the interior of the phase diagram. This evolution of the chiral transition reflects the existence of a thermodynamic duality between helical and vector (baryonic) chemical potentials. We also show that the presence of the helicity imbalance of quark matter increases the curvature of the chiral pseudocritical line in QCD.



rate research

Read More

124 - Sayantan Sharma 2019
Recent progress and the latest results on the bulk thermodynamic properties of QCD matter from lattice are reviewed. In particular, I will stress upon the fact that lattice techniques are now entering into precision era where they can provide us with new insights on even the microscopic degrees of freedom in different phases of QCD. I will discuss some instances, from the recent studies of topological fluctuations and screening masses. The progress towards understanding the effects of anomalous $U_A(1)$ symmetry on the chiral crossover transition and transport properties of QCD matter will also be discussed.
We present the crossover line between the quark gluon plasma and the hadron gas phases for small real chemical potentials. First we determine the effect of imaginary values of the chemical potential on the transition temperature using lattice QCD simulations. Then we use various formulas to perform an analytic continuation to real values of the baryo-chemical potential. Our data set maintains strangeness neutrality to match the conditions of heavy ion physics. The systematic errors are under control up to $mu_Bapprox 300$ MeV. For the curvature of the transition line we find that there is an approximate agreement between values from three different observables: the chiral susceptibility, chiral condensate and strange quark susceptibility. The continuum extrapolation is based on $N_t=$ 10, 12 and 16 lattices. By combining the analysis for these three observables we find, for the curvature, the value $kappa = 0.0149 pm 0.0021$.
The QCD phase diagram is studied in the presence of an isospin asymmetry using continuum extrapolated staggered quarks with physical masses. In particular, we investigate the phase boundary between the normal and the pion condensation phases and the chiral/deconfinement transition. The simulations are performed with a small explicit breaking parameter in order to avoid the accumulation of zero modes and thereby stabilize the algorithm. The limit of vanishing explicit breaking is obtained by means of an extrapolation, which is facilitated by a novel improvement program employing the singular value representation of the Dirac operator. Our findings indicate that no pion condensation takes place above $Tapprox 160$ MeV and also suggest that the deconfinement crossover continuously connects to the BEC-BCS crossover at high isospin asymmetries. The results may be directly compared to effective theories and model approaches to QCD.
In this contribution we investigate the phase diagram of QCD in the presence of an isospin chemical potential. To alleviate the infrared problems of the theory associated with pion condensation, we introduce the pionic source as an infrared regulator. We discuss various methods to extrapolate the results to vanishing pionic source, including a novel method based on the singular value spectrum of the massive Dirac operator, a leading-order reweighting and a spline Monte-Carlo fit. Our main results concern the phase transition boundary between the normal and the pion condensation phases and the chiral/deconfinement transition temperature as a function of the chemical potential. In addition, we perform a quantitative comparison between our direct results and a Taylor-expansion obtained at zero chemical potential to assess the applicability range of the latter.
136 - Owe Philipsen 2019
Neither the chiral limit nor finite baryon density can be simulated directly in lattice QCD, which severely limits our understanding of the QCD phase diagram. In this review I collect results for the phase structure in an extended parameter space of QCD, with varying numbers of flavours, quark masses, colours, lattice spacings, imaginary and isospin chemical potentials. Such studies help in understanding the underlying symmetries and degrees of freedom, and are beginning to provide a consistent picture constraining the possibilities for the physical phase diagram.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا