Do you want to publish a course? Click here

Twisted Quadrics and Algebraic Submanifolds in $mathbb{R}^n$

438   0   0.0 ( 0 )
 Added by Thomas Weber
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose a general procedure to construct noncommutative deformations of an algebraic submanifold $M$ of $mathbb{R}^n$, specializing the procedure [G. Fiore, T. Weber, Twisted submanifolds of $mathbb{R}^n$, arXiv:2003.03854] valid for smooth submanifolds. We use the framework of twisted differential geometry of Aschieri et al. (Class. Quantum Grav. 23, 1883-1911, 2006), whereby the commutative pointwise product is replaced by the $star$-product determined by a Drinfeld twist. We actually simultaneously construct noncommutative deformations of all the algebraic submanifolds $M_c$ that are level sets of the $f^a(x)$, where $f^a(x)=0$ are the polynomial equations solved by the points of $M$, employing twists based on the Lie algebra $Xi_t$ of vector fields that are tangent to all the $M_c$. The twisted Cartan calculus is automatically equivariant under twisted $Xi_t$. If we endow $mathbb{R}^n$ with a metric, then twisting and projecting to normal or tangent components commute, projecting the Levi-Civita connection to the twisted $M$ is consistent, and in particular a twisted Gauss theorem holds, provided the twist is based on Killing vector fields. Twisted algebraic quadrics can be characterized in terms of generators and $star$-polynomial relations. We explicitly work out deformations based on abelian or Jordanian twists of all quadrics in $mathbb{R}^3$ except ellipsoids, in particular twisted cylinders embedded in twisted Euclidean $mathbb{R}^3$ and twisted hyperboloids embedded in twisted Minkowski $mathbb{R}^3$ [the latter are twisted (anti-)de Sitter spaces $dS_2$, $AdS_2$].



rate research

Read More

We propose a general procedure to construct noncommutative deformations of an embedded submanifold $M$ of $mathbb{R}^n$ determined by a set of smooth equations $f^a(x)=0$. We use the framework of Drinfeld twist deformation of differential geometry of [Aschieri et al., Class. Quantum Gravity 23 (2006), 1883]; the commutative pointwise product is replaced by a (generally noncommutative) $star$-product determined by a Drinfeld twist. The twists we employ are based on the Lie algebra $Xi_t$ of vector fields that are tangent to all the submanifolds that are level sets of the $f^a$; the twisted Cartan calculus is automatically equivariant under twisted tangent infinitesimal diffeomorphisms. We can consistently project a connection from the twisted $mathbb{R}^n$ to the twisted $M$ if the twist is based on a suitable Lie subalgebra $mathfrak{e}subsetXi_t$. If we endow $mathbb{R}^n$ with a metric then twisting and projecting to the normal and tangent vector fields commute, and we can project the Levi-Civita connection consistently to the twisted $M$, provided the twist is based on the Lie subalgebra $mathfrak{k}subsetmathfrak{e}$ of the Killing vector fields of the metric; a twisted Gauss theorem follows, in particular. Twisted algebraic manifolds can be characterized in terms of generators and polynomial relations. We present in some detail twisted cylinders embedded in twisted Euclidean $mathbb{R}^3$ and twisted hyperboloids embedded in twisted Minkowski $mathbb{R}^3$ [these are twisted (anti-)de Sitter spaces $dS_2,AdS_2$].
The FLRW spacetimes can be realized as submanifolds of $mathbb{R}^6$. In this paper we relate the Laplace-Beltrami operator for an homogeneous scalar field $phi$ of $mathbb{R}^6$ to its explicit restriction on FLRW spacetimes. We then make the link between the homogeneous solutions of the equation $square_6 phi = 0$ in $mathbb{R}^6$ and those of the Klein-Gordon equation $(square_{f} - xi R^f + m^2)phi^f=0 $ for the free field $phi^f$ in the FLRW spacetime. We obtain as a byproduct a formula for the Ricci scalar of the FRLW spacetime in terms of the function $f$ defining this spacetime in $mathbb{R}^6$.
A general formula is calculated for the connection of a central metric w.r.t. a noncommutative spacetime of Lie-algebraic type. This is done by using the framework of linear connections on central bi-modules. The general formula is further on used to calculate the corresponding Riemann tensor and prove the corresponding Bianchi identities and certain symmetries that are essential to obtain a symmetric and divergenceless Einstein Tensor. In particular, the obtained Einstein Tensor is not equivalent to the sum of the noncommutative Riemann tensor and scalar, as in the commutative case, but in addition a traceless term appears.
163 - S. Kharchev , S. Khoroshkin 2021
We obtain certain Mellin-Barnes integrals which present wave functions for $GL(n,mathbb{R})$ hyperbolic Sutherland model with arbitrary positive coupling constant.
We give lower bounds for the fundamental tone of open sets in submanifolds with locally bounded mean curvature in $ N times mathbb{R}$, where $N$ is an $n$-dimensional complete Riemannian manifold with radial sectional curvature $K_{N} leq kappa$. When the immersion is minimal our estimates are sharp. We also show that cylindrically bounded minimal surfaces has positive fundamental tone.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا