Do you want to publish a course? Click here

Minimum variance estimation of galaxy power spectrum in redshift space

146   0   0.0 ( 0 )
 Added by Maresuke Shiraishi
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study an efficient way to enhance the measurability of the galaxy density and/or velocity power spectrum in redshift space. It is based on the angular decomposition with the Tripolar spherical harmonic (TripoSH) basis and applicable even to galaxy distributions in wide-angle galaxy surveys. While nontrivial multipole-mode mixings are inevitable in the covariance of the Legendre decomposition coefficient commonly used in the small-angle power spectrum analysis, our analytic computation of the covariance of the TripoSH decomposition coefficient shows that such mixings are absent by virtue of high separability of the TripoSH basis, yielding the minimum variance. Via the simple signal-to-noise ratio assessment, we confirm that the detectability improvement by the TripoSH decomposition approach becomes more significant at higher multipole modes, and, e.g., the hexadecapole of the density power spectrum has two orders of magnitude improvement. The TripoSH decomposition approach is expected to be applied to not only currently available survey data but also forthcoming wide-angle one, and to bring about something new or much more accurate cosmological information.



rate research

Read More

Future high spectroscopic resolution galaxy surveys will observe galaxies with nearly full-sky footprints. Modeling the galaxy clustering for these surveys, therefore, must include the wide-angle effect with narrow redshift binning. In particular, when the redshift-bin size is comparable to the typical peculiar velocity field, the nonlinear redshift-space distortion (RSD) effect becomes important. A naive projection of the Fourier-space RSD model to spherical harmonic space leads to diverging expressions. In this paper we present a general formalism of projecting the higher-order RSD terms into spherical harmonic space. We show that the nonlinear RSD effect, including the fingers-of-God (FoG), can be entirely attributed to a modification of the radial window function. We find that while linear RSD enhances the harmonic-space power spectrum, unlike the three-dimensional case, the enhancement decreases on small angular-scales. The fingers-of-God suppress the angular power spectrum on all transverse scales if the bin size is smaller than $Delta r lesssim pi sigma_u$; for example, the radial bin sizes corresponding to a spectral resolution $R=lambda/Delta lambda$ of a few hundred satisfy the condition. We also provide the flat-sky approximation which reproduces the full calculation to sub-percent accuracy.
We consider the benefits of measuring cosmic statistical anisotropy from redshift-space correlators of the galaxy number density fluctuation and the peculiar velocity field without adopting the plane-parallel (PP) approximation. Since the correlators are decomposed using the general tripolar spherical harmonic (TripoSH) basis, we can deal with wide-angle contributions untreatable by the PP approximation, and at the same time, target anisotropic signatures can be cleanly extracted. We, for the first time, compute the covariance of the TripoSH decomposition coefficient and the Fisher matrix to forecast the detectability of statistical anisotropy. The resultant expression of the covariance is free from nontrivial mixings between each multipole moment caused by the PP approximation and hence the detectability is fully optimized. Compared with the analysis under the PP approximation, the superiority in detectability is always confirmed, and it is highlighted, especially in the cases that the shot noise level is large and that target statistical anisotropy has a blue-tilted shape in Fourier space. The application of the TripoSH-based analysis to forthcoming all-sky survey data could result in constraints on anisotropy comparable to or tighter than the current cosmic microwave background ones.
We present a fast implementation of the next-to-leading order (1-loop) redshift-space galaxy power spectrum by using FFTlog-based methods. [V. Desjacques, D. Jeong, and F. Schmidt, JCAP 1812 (12), 035] have shown that the 1-loop galaxy power spectrum in redshift space can be computed with 28 independent loop integrals with 22 bias parameters. Analytical calculation of the angular part of the loop integrals leaves the radial part in the form of a spherical Bessel transformation that is ready to be integrated numerically by using the FFTLog transformation. We find that the original 28 loop integrals can be solved with a total of 85 unique FFTLog transformations, yet leading to a few orders of magnitude speed up over traditional multi-dimensional integration. The code used in this work is publicly available at https://github.com/JosephTomlinson/GeneralBiasPk
We develop a framework to compute the redshift space power spectrum (PS), with kernels beyond Einstein-de Sitter (EdS), that can be applied to a wide variety of generalized cosmologies. We build upon a formalism that was recently employed for standard cosmology in Chen, Vlah & White (2020), and utilize an expansion of the density-weighted velocity moment generating function that explicitly separates the magnitude of the $k$-modes and their angle to the line-of-sight direction dependencies. We compute the PS for matter and biased tracers to 1-loop Perturbation Theory (PT) and show that the expansion has a correct infrared and ultraviolet behavior, free of unwanted divergences. We also add Effective Field Theory (EFT) counterterms, necessary to account for small-scale contributions to PT, and employ an IR-resummation prescription to properly model the smearing of the BAO due to large scale bulk flows within Standard-PT. To demonstrate the applicability of our formalism, we apply it on the $Lambda$CDM and the Hu-Sawicki $f(R)$ models, and compare our numerical results against the ELEPHANT suite of $N$-body simulations, finding very good agreement up to $k= 0.27, text{Mpc}^{-1} h$ at $z=0.5$ for the first three non-vanishing Legendre multipoles of the PS. To our knowledge, the model presented in this work is the most accurate theoretical EFT-PT for modified gravity to date, being the only one that accounts for beyond linear local biasing in redshift-space. Hence, we argue our RSD modeling is a promising tool to construct theoretical templates in order to test deviations from $Lambda$CDM using real data obtained from the next stage of cosmological surveys such as DESI and LSST.
Redshift-space distortions (RSD) generically affect any spatially-dependent observable that is mapped using redshift information. The effect on the observed clustering of galaxies is the primary example of this. This paper is devoted to another example: the effect of RSD on the apparent peculiar motions of tracers as inferred from their positions in redshift space (i.e. the observed distance). Our theoretical study is motivated by practical considerations, mainly, the direct estimation of the velocity power spectrum, which is preferably carried out using the tracers redshift-space position (so as to avoid uncertainties in distance measurements). We formulate the redshift-space velocity field and show that RSD enters as a higher-order effect. Physically, this effect may be interpreted as a dissipative correction to the usual perfect-fluid description of dark matter. We show that the effect on the power spectrum is a damping on relatively large, quasilinear scales ($k>0.01,h,{rm Mpc}^{-1}$), as was observed, though unexplained, in $N$-body simulations elsewhere. This paper presents two power spectrum models for the the peculiar velocity field in redshift space, both of which can be considered velocity analogues of existing clustering models. In particular, we show that the Finger-of-God effect, while also present in the velocity field, cannot be entirely blamed for the observed damping in simulations. Our work provides some of the missing modelling ingredients required for a density--velocity multi-tracer analysis, which has been proposed for upcoming redshift surveys.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا