Do you want to publish a course? Click here

Optical spectroscopy and X-ray observations of the D-type symbiotic star EF Aql

428   0   0.0 ( 0 )
 Added by Kiril Stoyanov
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We performed high-resolution optical spectroscopy and X-ray observations of the recently identified Mira-type symbiotic star EF Aql. Based on high-resolution optical spectroscopy obtained with SALT, we determine the temperature ($sim $55 000 K) and the luminosity ($sim$ 5.3 $L_odot$) of the hot component in the system. The heliocentric radial velocities of the emission lines in the spectra reveal possible stratification of the chemical elements. We also estimate the mass-loss rate of the Mira donor star. Our Swift observation did not detect EF Aql in X-rays. The upper limit of the X-ray observations is 10$^{-12}$ erg cm$^{-2}$ s$^{-1}$, which means that EF Aql is consistent with the faintest X-ray systems detected so far. Otherwise we detected it with the UVOT instrument with an average UVM2 magnitude of 14.05. During the exposure, EF Aql became approximately 0.2 UVM2 magnitudes fainter. The periodogram analysis of the V-band data reveals an improved period of 320.4$pm$0.3 d caused by the pulsations of the Mira-type donor star. The spectra are available upon request from the authors.



rate research

Read More

We performed photometry with a 1 minute time resolution of the symbiotic stars EF Aquilae, AG Pegasi and SU Lyncis in Johnson B and V band. Our observations of the symbiotic Mira-type star EF Aql demonstrate the presence of stochastic light variations with an amplitude of about 0.25 magnitudes on a time scale of 5 minutes. The observations prove the white dwarf nature of the hot component in the binary system. It is the 11th symbiotic star (among more than 200 symbiotic stars known in our Galaxy) which displays optical flickering. For SU Lyn we do not detect flickering with an amplitude above 0.03 mag in B band. For AG Peg, the amplitude of variability in B and V band is smaller than 0.05 mag and 0.04 mag respectively.
We report optical CCD photometry of the recently identified symbiotic star EF Aql. Our observations in Johnson V and B bands clearly show the presence of stochastic light variations with an amplitude of about 0.2 mag on a time scale of minutes. The observations point toward a white dwarf (WD) as the hot component in the system. It is the 11-th object among more than 200 symbiotic stars known with detected optical flickering. Estimates of the mass accretion rate onto the WD and the mass loss rate in the wind of the Mira secondary star lead to the conclusion that less than 1 per cent of the wind is captured by the WD. Eight further candidates for the detection of flickering in similar systems are suggested.
Compared to mass transfer in cataclysmic variables, the nature of accretion in symbiotic binaries in which red giants transfer material to white dwarfs (WDs) has been difficult to uncover. The accretion flows in a symbiotic binary are most clearly observable, however, when there is no quasi-steady shell burning on the WD to hide them. RT Cru is the prototype of such non-burning symbiotics, with its hard ({delta}-type) X-ray emission providing a view of its innermost accretion structures. In the past 20 yr, RT Cru has experienced two similar optical brightening events, separated by 4000 days and with amplitudes of {Delta}V 1.5 mag. After Swift became operative, the Burst Alert Telescope (BAT) detector revealed a hard X-ray brightening event almost in coincidence with the second optical peak. Spectral and timing analyses of multi-wavelength observations that we describe here, from NuSTAR, Suzaku, Swift/X-Ray Telescope (XRT) + BAT + UltraViolet Optical Telescope (UVOT) (photometry) and optical photometry and spectroscopy, indicate that accretion proceeds through a disk that reaches down to the WD surface. The scenario in which a massive, magnetic WD accretes from a magnetically truncated accretion disk is not supported. For example, none of our data show the minute-time-scale periodic modulations (with tight upper limits from X-ray data) expected from a spinning, magnetic WD. Moreover, the similarity of the UV and X-ray fluxes, as well as the approximate constancy of the hardness ratio within the BAT band, indicate that the boundary layer of the accretion disk remained optically thin to its own radiation throughout the brightening event, during which the rate of accretion onto the WD increased to 6.7 $times$ 10-9 Msun yr^{-1} (d/2 kpc)^2. (Abridged abstract version)
An incidental spectrum of the poorly studied long period variable EF Aquilae shows [O III] emission indicative of a symbiotic star. Strong GALEX detections in the UV reinforce this classification, providing overt evidence for the presence of the hot subluminous companion. Recent compilations of the photometric behavior strongly suggest that the cool component is a Mira variable. Thus EF Aql appears to be a member of the rare symbiotic Mira subgroup.
The large number of close-in Jupiter-size exoplanets prompts the question whether star-planet interaction (SPI) effects can be detected. We focused our attention on the system HD 17156, having a Jupiter-mass planet in a very eccentric orbit. Here we present results of the XMM-Newton observations and of a five months coordinated optical campaign with the HARPS-N spectrograph. We observed HD 17156 with XMM-Newton when the planet was approaching the apoastron and then at the following periastron passage, quasi simultaneously with HARPS-N. We obtained a clear ($approx 5.5sigma$) X-ray detection only at the periastron visit, accompanied by a significant increase of the $R_{rm HK}$ chromospheric index. We discuss two possible scenarios for the activity enhancement: magnetic reconnection and flaring or accretion onto the star of material tidally stripped from the planet. In any case, this is possibly the first evidence of a magnetic SPI effect caught in action.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا