Do you want to publish a course? Click here

Fast multivariate empirical cumulative distribution function with connection to kernel density estimation

63   0   0.0 ( 0 )
 Added by Nicolas Langren\\'e
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

This paper revisits the problem of computing empirical cumulative distribution functions (ECDF) efficiently on large, multivariate datasets. Computing an ECDF at one evaluation point requires $mathcal{O}(N)$ operations on a dataset composed of $N$ data points. Therefore, a direct evaluation of ECDFs at $N$ evaluation points requires a quadratic $mathcal{O}(N^2)$ operations, which is prohibitive for large-scale problems. Two fast and exact methods are proposed and compared. The first one is based on fast summation in lexicographical order, with a $mathcal{O}(N{log}N)$ complexity and requires the evaluation points to lie on a regular grid. The second one is based on the divide-and-conquer principle, with a $mathcal{O}(Nlog(N)^{(d-1){vee}1})$ complexity and requires the evaluation points to coincide with the input points. The two fast algorithms are described and detailed in the general $d$-dimensional case, and numerical experiments validate their speed and accuracy. Secondly, the paper establishes a direct connection between cumulative distribution functions and kernel density estimation (KDE) for a large class of kernels. This connection paves the way for fast exact algorithms for multivariate kernel density estimation and kernel regression. Numerical tests with the Laplacian kernel validate the speed and accuracy of the proposed algorithms. A broad range of large-scale multivariate density estimation, cumulative distribution estimation, survival function estimation and regression problems can benefit from the proposed numerical methods.

rate research

Read More

In this paper we revisit the kernel density estimation problem: given a kernel $K(x, y)$ and a dataset of $n$ points in high dimensional Euclidean space, prepare a data structure that can quickly output, given a query $q$, a $(1+epsilon)$-approximation to $mu:=frac1{|P|}sum_{pin P} K(p, q)$. First, we give a single data structure based on classical near neighbor search techniques that improves upon or essentially matches the query time and space complexity for all radial kernels considered in the literature so far. We then show how to improve both the query complexity and runtime by using recent advances in data-dependent near neighbor search. We achieve our results by giving a new implementation of the natural importance sampling scheme. Unlike previous approaches, our algorithm first samples the dataset uniformly (considering a geometric sequence of sampling rates), and then uses existing approximate near neighbor search techniques on the resulting smaller dataset to retrieve the sampled points that lie at an appropriate distance from the query. We show that the resulting sampled dataset has strong geometric structure, making approximate near neighbor search return the required samples much more efficiently than for worst case datasets of the same size. As an example application, we show that this approach yields a data structure that achieves query time $mu^{-(1+o(1))/4}$ and space complexity $mu^{-(1+o(1))}$ for the Gaussian kernel. Our data dependent approach achieves query time $mu^{-0.173-o(1)}$ and space $mu^{-(1+o(1))}$ for the Gaussian kernel. The data dependent analysis relies on new techniques for tracking the geometric structure of the input datasets in a recursive hashing process that we hope will be of interest in other applications in near neighbor search.
168 - Wai Ming Tai 2020
Given a point set $Psubset mathbb{R}^d$, a kernel density estimation for Gaussian kernel is defined as $overline{mathcal{G}}_P(x) = frac{1}{left|Pright|}sum_{pin P}e^{-leftlVert x-p rightrVert^2}$ for any $xinmathbb{R}^d$. We study how to construct a small subset $Q$ of $P$ such that the kernel density estimation of $P$ can be approximated by the kernel density estimation of $Q$. This subset $Q$ is called coreset. The primary technique in this work is to construct $pm 1$ coloring on the point set $P$ by the discrepancy theory and apply this coloring algorithm recursively. Our result leverages Banaszczyks Theorem. When $d>1$ is constant, our construction gives a coreset of size $Oleft(frac{1}{varepsilon}right)$ as opposed to the best-known result of $Oleft(frac{1}{varepsilon}sqrt{logfrac{1}{varepsilon}}right)$. It is the first to give a breakthrough on the barrier of $sqrt{log}$ factor even when $d=2$.
121 - Suzanne Varet 2019
Kernel density estimation is a well known method involving a smoothing parameter (the bandwidth) that needs to be tuned by the user. Although this method has been widely used the bandwidth selection remains a challenging issue in terms of balancing algorithmic performance and statistical relevance. The purpose of this paper is to compare a recently developped bandwidth selection method for kernel density estimation to those which are commonly used by now (at least those which are implemented in the R-package). This new method is called Penalized Comparison to Overfitting (PCO). It has been proposed by some of the authors of this paper in a previous work devoted to its statistical relevance from a purely theoretical perspective. It is compared here to other usual bandwidth selection methods for univariate and also multivariate kernel density estimation on the basis of intensive simulation studies. In particular, cross-validation and plug-in criteria are numerically investigated and compared to PCO. The take home message is that PCO can outperform the classical methods without algorithmic additionnal cost.
We study quantum anomaly detection with density estimation and multivariate Gaussian distribution. Both algorithms are constructed using the standard gate-based model of quantum computing. Compared with the corresponding classical algorithms, the resource complexities of our quantum algorithm are logarithmic in the dimensionality of quantum states and the number of training quantum states. We also present a quantum procedure for efficiently estimating the determinant of any Hermitian operators $mathcal{A}inmathcal{R}^{Ntimes N}$ with time complexity $O(polylog N)$ which forms an important subroutine in our quantum anomaly detection with multivariate Gaussian distribution. Finally, our results also include the modified quantum kernel principal component analysis (PCA) and the quantum one-class support vector machine (SVM) for detecting classical data.
169 - Salim Bouzebda 2009
The purpose of this note is to provide an approximation for the generalized bootstrapped empirical process achieving the rate in Kolmos et al. (1975). The proof is based on much the same arguments as in Horvath et al. (2000). As a consequence, we establish an approximation of the bootstrapped kernel-type density estimator
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا