Do you want to publish a course? Click here

Electrically tunable Kondo effect as a direct measurement of the chiral anomaly in disorder Weyl semimetals

59   0   0.0 ( 0 )
 Added by Ming-Xun Deng
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose a mechanism to directly measure the chiral anomaly in disorder Weyl semimetals (WSMs) by the Kondo effect. We find that in a magnetic and electric field driven WSM, the locations of the Kondo peaks can be modulated by the chiral chemical potential, which is proportional to $mathbf{E}cdot mathbf{B}$. The Kondo peaks come from spin fluctuations within the impurities, which apart from the temperature, relate closely to the hosts Fermi level. In WSMs, the chiral-anomaly-induced chirality population imbalance will shift the local Fermi levels of the paired Weyl valleys toward opposite directions in energy, and then affects the Kondo effect. Consequently, the Kondo effect can be tunable by an external electric field via the chiral chemical potential. This is unique to the chiral anomaly. Base on this, we argue that the electrically tunable Kondo effect can serve as a direct measurement of the chiral anomaly in WSMs. The Kondo peaks are robust against the disorder effect and therefore, the signal of the chiral anomaly survives for a relatively weak magnetic field.



rate research

Read More

After the experimental realization, the Berry curvature dipole (BCD) induced nonlinear Hall effect (NLHE) has attracted tremendous interest to the condensed matter community. Here, we investigate another family of Hall effect, namely, chiral anomaly induced nonlinear Hall effect (CNHE) in multi-Weyl semimetal (mWSM). In contrast to the BCD induced NLHE, CNHE appears because of the combination of both chiral anomaly and anomalous velocity due to non-trivial Berry curvature. Using the semiclassical Boltzmann theory within the relaxation time approximation, we show that, in contrast to the chiral anomaly induced linear Hall effect, the magnitude of CNHE decreases with the topological charge n. Interestingly, we find that unlike the case of n=1, the CNHE has different behaviors in different planes. Our prediction on the behavior of CNHE in mWSM can directly be checked in experiments.
100 - Yang Gao 2021
Weyl semimetals are well-known for hosting topologically protected linear band crossings, serving as the analog of the relativistic Weyl Fermions in the condensed matter context. Such analogy persists deeply, allowing the existence of the chiral anomaly under parallel electric and magnetic field in Weyl semimetals. Different from such picture, here we show that, a unique mechanism of the chiral anomaly exists in Weyl semimetals by injecting a spin current with parallel spin polarization and flow direction. The existence of such a chiral anomaly is protected by the topological feature that each Weyl cone can also be a source or drain of the spin field in the momentum space. It leads to measurable experimental signals, such as an electric charge current parallel with an applied magnetic field in the absence of the electric field, and a sharp peak at certain resonant frequency in the injection current in achiral Weyl semimetals through the circular photogalvanic effect. Our work shows that the topological implication of Weyl semimetals goes beyond the link with relativistic Weyl Fermions, and offers a promising scenario to examine the interplay between topology and spin.
We present a theory of magnetotransport phenomena related to the chiral anomaly in Weyl semimetals. We show that conductivity, thermal conductivity, thermoelectric and the sound absorption coefficients exhibit strong and anisotropic magnetic field dependences. We also discuss properties of magneto-plasmons and magneto-polaritons, whose existence is entirely determined by the chiral anomaly. Finally, we discuss the conditions of applicability of the quasi-classical description of electron transport phenomena related to the chiral anomaly.
Chiral anomaly or Adler-Bell-Jackiw anomaly in Weyl semimetals (WSMs) has a significant impact on the electron transport behaviors, leading to remarkable longitudinal or planar electrical and thermoelectric transport phenomena in the presence of electromagnetic gauge fields. These phenomena are consequences of the imbalanced chiral charge and energy induced by chiral anomaly in the presence of parallel electric ($mathbf{E}$) and magnetic ($mathbf{B}$) fields ($mathbf{E cdot B } eq 0$) or $(mathbf{B cdot abla }T eq 0)$ ($mathbf{ abla}T$ is the thermal gradient). We here propose another two fascinating transport properties, namely, the nonlinear planar Nernst effect and nonlinear planar thermal Hall effect induced by chiral anomaly in the presence of $mathbf{B cdot abla}T eq 0$ in WSMs. Using the semiclassical Boltzmann transport theory, we derive the analytical expressions for the chiral anomaly induced nonlinear Nernst and thermal Hall transport coefficients and also evaluate the fundamental mathematical relations among them in the nonlinear regime. The formulas we find in this current work are consistent with that predicted for the nonlinear anomalous electrical and thermoelectric effects induced by Berry curvature dipole recently. Additionally, in contrast to the recent work, by utilizing the lattice Weyl Hamiltonian with intrinsic chiral chemical potential, we find that the chiral anomaly induced nonlinear planar effects can exist even for a pair of oppositely tilted or non-tilted Weyl cones in both time reversal and inversion broken WSMs. The chiral anomaly induced nonlinear planar effects predicted here along with the related parameter dependencies are hence possible to be realized in realistic WSMs in experiment.
We describe a new type of the Chiral Magnetic Effect (CME) that should occur in Weyl semimetals with an asymmetry in the dispersion relations of the left- and right-handed chiral Weyl fermions. In such materials, time-dependent pumping of electrons from a non-chiral external source generates a non-vanishing chiral chemical potential. This is due to the different capacities of the left- and right-handed (LH and RH) chiral Weyl cones arising from the difference in the density of states in the LH and RH cones. The chiral chemical potential then generates, via the chiral anomaly, a current along the direction of an applied magnetic field even in the absence of an external electric field. The source of chirality imbalance in this new setup is thus due to the band structure of the system and the presence of (non-chiral) electron source, and not due to the parallel electric and magnetic fields. We illustrate the effect by an argument based on the effective field theory, and by the chiral kinetic theory calculation for a rotationally invariant Weyl semimetal with different Fermi velocities in the left and right chiral Weyl cones; we also consider the case of a Weyl semimetal with Weyl nodes at different energies. We argue that this effect is generically present in Weyl semimetals with different dispersion relations for LH and RH chiral Weyl cones, such as SrSi2 recently predicted as a Weyl semimetal with broken inversion and mirror symmetries, as long as the chiral relaxation time is much longer than the transport scattering time.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا