Do you want to publish a course? Click here

Predictions for $mathrm{Z}$-boson production in association with a $mathrm{b}$-jet at $mathcal{O}(alpha_s^3)$

78   0   0.0 ( 0 )
 Added by Rhorry Gauld
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

Precise predictions are provided for the production of a $mathrm{Z}$-boson and a $mathrm{b}$-jet in hadron-hadron collisions within the framework of perturbative QCD, at $mathcal{O}(alpha_s^3)$. To obtain these predictions we perform the first calculation of a hadronic scattering process involving the direct production of a flavoured-jet at next-to-next-to-leading order accuracy in massless QCD, and extend techniques to also account for the impact of finite heavy-quark mass effects. The predictions are compared to CMS data obtained in $mathrm{pp}$ collisions at a centre-of-mass energy of $8~mathrm{TeV}$, which are the most precise data from Run I of the LHC for this process, where a good description of the data is achieved. To allow this comparison we have performed an unfolding of the data, which overcomes the long-standing issue that the experimental and theoretical definitions of jet flavour are incompatible.



rate research

Read More

We present precise predictions for the production of a Higgs boson in association with a hadronic jet and a $mathrm{W}$ boson at hadron colliders. The behaviour of QCD corrections are studied for fiducial cross sections and distributions of the charged gauge boson and jet-related observables. The inclusive process (at least one resolved jet) and the exclusive process (exactly one resolved jet) are contrasted and discussed. The inclusion of QCD corrections up to $mathcal{O}(alpha_{text{s}}^3)$ leads to a clear stabilisation of the predictions and contributes substantially to a reduction of remaining theoretical uncertainties.
We present the full NLO SUSY-QCD corrections to the pair production of neutralinos and charginos at the LHC in association with a jet and their matching to parton-shower programs in the framework of the POWHEG-BOX package. The code we have developed provides a SUSY Les Houches Accord interface for setting electroweak and supersymmetric input parameters. Decays of the neutralinos and charginos and parton-shower effects can be simulated with multi-purpose programs such as PYTHIA. The capabilities of the code are illustrated by phenomenological results for a parameter point in the framework of pMSSM10, compatible with present experimental limits on supersymmetry. We find that NLO-QCD corrections as well as parton-shower effects are of primary importance for the appropriate description of jet distributions.
Final states with a vector boson and a hadronic jet allow one to infer the Born-level kinematics of the underlying hard scattering process, thereby probing the partonic structure of the colliding protons. At forward rapidities, the parton collisions are highly asymmetric and resolve the parton distributions at very large or very small momentum fractions, where they are less well constrained by other processes. Using theory predictions accurate to next-to-next-to-leading order (NNLO) in QCD for both $mathrm{W}^{pm}$ and $mathrm{Z}$ production in association with a jet at large rapidities at the LHC, we perform a detailed phenomenological analysis of recent LHC measurements. The increased theory precision allows us to clearly identify specific kinematical regions where the description of the data is insufficient. By constructing ratios and asymmetries of these cross sections, we aim to identify possible origins of the deviations, and highlight the potential impact of the data on improved determinations of parton distributions.
The angular distributions of lepton pairs in the Drell-Yan process can provide rich information on the underlying QCD production mechanisms. These dynamics can be parameterised in terms of a set of frame dependent angular coefficients, $A_{i=0,ldots,7}$, which depend on the invariant mass, transverse momentum, and rapidity of the lepton pair. Motivated by recent measurements of these coefficients by ATLAS and CMS, and in particular by the apparent violation of the Lam-Tung relation $A_0-A_2=0$, we perform a precision study of the angular coefficients at $mathcal{O}(alpha_s^3)$ in perturbative QCD. We make predictions relevant for $pp$ collisions at $sqrt{s} = 8$ TeV, and perform comparisons with the available ATLAS and CMS data as well as providing predictions for a prospective measurement at LHCb. To expose the violation of the Lam-Tung relationship we propose a new observable $Delta^mathrm{LT} = 1-A_2/A_0$ that is more sensitive to the dynamics in the region where $A_0$ and $A_2$ are both small. We find that the $mathcal{O}(alpha_s^3)$ corrections have an important impact on the $p_{T,Z}$ distributions for several of the angular coefficients, and are essential to provide an adequate description of the data. The compatibility of the available ATLAS and CMS data is reassessed by performing a partial $chi^2$ test with respect to the central theoretical prediction which shows that $chi^2/N_mathrm{data}$ is significantly reduced by going from $mathcal{O}(alpha_s^2)$ to $mathcal{O}(alpha_s^3)$.
The existence of a new force beyond the Standard Model is compelling because it could explain several striking astrophysical observations which fail standard interpretations. We searched for the light vector mediator of this dark force, the $mathrm{U}$ boson, with the KLOE detector at the DA$Phi$NE $mathrm{e}^{+}mathrm{e}^{-}$ collider. Using an integrated luminosity of 1.54 fb$^{-1}$, we studied the process $mathrm{e}^{+}mathrm{e}^{-} to mathrm{U}gamma$, with $mathrm{U} to mathrm{e}^{+}mathrm{e}^{-}$, using radiative-return to search for a resonant peak in the dielectron invariant-mass distribution. We did not find evidence for a signal, and set a 90%~CL upper limit on the mixing strength between the Standard Model photon and the dark photon, $varepsilon^2$, at $10^{-6}$--$10^{-4}$ in the 5--520~MeV/c$^2$ mass range.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا