Do you want to publish a course? Click here

Instrumentation for high-resolution laser spectroscopy at the ALTO radioactive-beam facility

243   0   0.0 ( 0 )
 Added by Deyan Yordanov
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Collinear laser spectroscopy is one of the essential tools for nuclear-structure studies. It allows nuclear electromagnetic properties of ground and isomeric states to be extracted with high experimental precision. Radioactive-beam facilities worldwide strive to introduce such capabilities or to improve existing ones. Here we present the implementation of collinear laser spectroscopy at the ALTO research laboratory, along with data from successful off-line commissioning using sodium beam. The instrumental constituents are discussed with emphasis on simple technical solutions and maximized use of standard equipment. Potential future applications are outlined.



rate research

Read More

66 - S. Kopp 2006
The Neutrinos at the Main Injector (NuMI) facility is a conventional neutrino beam which produces muon neutrinos by focusing a beam of mesons into a long evacuated decay volume. We have built four arrays of ionization chambers to monitor the position and intensity of the hadron and muon beams associated with neutrino production at locations downstream of the decay volume. This article describes the chambers construction, calibration, and commissioning in the beam.
The Beam Dump Facility (BDF) project is a proposed general-purpose facility at CERN, dedicated to beam dump and fixed target experiments. In its initial phase, the facility is foreseen to be exploited by the Search for Hidden Particles (SHiP) experiment. Physics requirements call for a pulsed 400 GeV/c proton beam as well as the highest possible number of protons on target (POT) each year of operation, in order to search for feebly interacting particles. The target/dump assembly lies at the heart of the facility, with the aim of safely absorbing the full high intensity Super Proton Synchrotron (SPS) beam, while maximizing the production of charmed and beauty mesons. High-Z materials are required for the target/dump, in order to have the shortest possible absorber and reduce muon background for the downstream experiment. The high average power deposited on target (305 kW) creates a challenge for heat removal. During the BDF facility Comprehensive Design Study (CDS), launched by CERN in 2016, extensive studies have been carried out in order to define and assess the target assembly design. These studies are described in the present contribution, which details the proposed design of the BDF production target, as well as the material selection process and the optimization of the target configuration and beam dilution. One of the specific challenges and novelty of this work is the need to consider new target materials, such as a molybdenum alloy (TZM) as core absorbing material and Ta2.5W as cladding. Thermo-structural and fluid dynamics calculations have been performed to evaluate the reliability of the target and its cooling system under beam operation. In the framework of the target comprehensive design, a preliminary mechanical design of the full target assembly has also been carried out, assessing the feasibility of the whole target system.
65 - Y. Nakano , R Igosawa , S. Iida 2020
Recently, we reported the commissioning of the new cryogenic ion storage ring RICE, which demonstrated potential capabilities for the precise studies of molecular structures and reaction dynamics. In the present article, we describe the status of experimental programs ongoing at RICE with a focus on the laser spectroscopy and merged-beam collision experiments.
469 - F. Acerbi , A. Berra , M. Bonesini 2020
The uncertainty in the initial neutrino flux is the main limitation for a precise determination of the absolute neutrino cross section. The ERC funded ENUBET project (2016-2021) is studying a facility based on a narrow band beam to produce an intense source of electron neutrinos with a ten-fold improvement in accuracy. Since March 2019 ENUBET is also a Neutrino Platform experiment at CERN: NP06/ENUBET. A key element of the project is the instrumentation of the decay tunnel to monitor large angle positrons produced together with $ u_e$ in the three body decays of kaons ($K_{e3}$) and to discriminate them from neutral and charged pions. The need for an efficient and high purity e/$pi$ separation over a length of several meters, and the requirements for fast response and radiation hardness imposed by the harsh beam environment, suggested the implementation of a longitudinally segmented Fe/scintillator calorimeter with a readout based on WLS fibers and SiPM detectors. An extensive experimental program through several test beam campaigns at the CERN-PS T9 beam line has been pursued on calorimeter prototypes, both with a shashlik and a lateral readout configuration. The latter, in which fibers collect the light from the side of the scintillator tiles, allows to place the light sensors away from the core of the calorimeter, thus reducing possible irradiation damages with respect to the shashlik design. This contribution will present the achievements of the prototyping activities carried out, together with irradiation tests made on the Silicon Photo-Multipliers. The results achieved so far pin down the technology of choice for the construction of the 3 m long demonstrator that will take data in 2021.
CERN has launched a study phase to evaluate the feasibility of a new high-intensity beam dump facility at the CERN Super Proton Synchrotron accelerator with the primary goal of exploring Hidden Sector models and searching for Light Dark Matter, but which also offers opportunities for other fixed target flavour physics programs such as rare tau lepton decays and tau neutrino studies. The new facility will require - among other infrastructure - a target complex in which a dense target/dump will be installed, capable of absorbing the entire energy of the beam extracted from the SPS accelerator. In theory, the target/dump could produce very weakly interacting particles, to be investigated by a suite of particle detectors to be located downstream of the target complex. As part of the study, a development design of the target complex has been produced, taking into account the handling and remote handling operations needed through the lifetime of the facility. Two different handling concepts have been studied and both resulting designs are presented.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا