Do you want to publish a course? Click here

In vivo three-dimensional brain and extremity MRI at 50 mT using a permanent magnet Halbach array

259   0   0.0 ( 0 )
 Added by Tom O'Reilly
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Purpose: To design a low-cost, portable permanent magnet-based MRI system capable of obtaining in vivo MR images within a reasonable scan time. Methods: A discretized Halbach permanent magnet array with a clear bore diameter of 27 cm was designed for operation at 50 mT. Custom built gradient coils, radiofrequency coil, gradient amplifiers and radiofrequency amplifier were integrated and tested on both phantoms and in vivo. Results: Phantom results showed that the gradient non-linearity in the y- and z-directions was less than 5% over a 15 cm field-of-view and did not need correcting. For the x-direction, it was significantly greater, but could be partially corrected in post-processing. Three dimensional In vivo scans of the brain of a healthy volunteer using a turbo-spin echo sequence were acquired at a spatial resolution of 4x4x4 mm in a time of ~2 mins. T1-weighted and T2-weighted scans showed a good degree of tissue contrast. In addition, in vivo scans of the knee of a healthy volunteer were acquired at a spatial resolution of ~3x2x2 mm within a twelve minutes to show the applicability of the system to extremity imaging. Conclusion: This work has shown that it is possible to construct a low-field MRI unit with hardware components costing less than 10000 euros, which is able to acquire human images in vivo within a reasonable data acquisition time. The system has a high degree of portability with magnet weight ~75 kg, gradient and RF amplifiers each 15 kg, gradient coils 10 kg and spectrometer 5 kg.



rate research

Read More

A large number of mathematical models have been proposed to describe the measured signal in diffusion-weighted (DW) magnetic resonance imaging (MRI) and infer properties about the white matter microstructure. However, a head-to-head comparison of DW-MRI models is critically missing in the field. To address this deficiency, we organized the White Matter Modeling Challenge during the International Symposium on Biomedical Imaging (ISBI) 2015 conference. This competition aimed at identifying the DW-MRI models that best predict unseen DW data. in vivo DW-MRI data was acquired on the Connectom scanner at the A.A.Martinos Center (Massachusetts General Hospital) using gradients strength of up to 300 mT/m and a broad set of diffusion times. We focused on assessing the DW signal prediction in two regions: the genu in the corpus callosum, where the fibres are relatively straight and parallel, and the fornix, where the configuration of fibres is more complex. The challenge participants had access to three-quarters of the whole dataset, and their models were ranked on their ability to predict the remaining unseen quarter of data. In this paper we provide both an overview and a more in-depth description of each evaluated model, report the challenge results, and infer trends about the model characteristics that were associated with high model ranking. This work provides a much needed benchmark for DW-MRI models. The acquired data and model details for signal prediction evaluation are provided online to encourage a larger scale assessment of diffusion models in the future.
Ultracold neutron (UCN) storage measurements were made in a trap constructed from a 1.3 T Halbach Octupole PErmanent (HOPE) magnet array aligned vertically, using the TES-port of the PF2 source at the Institut Laue-Langevin. A mechanical UCN valve at the bottom of the trap was used for filling and emptying. This valve was covered with Fomblin grease to induce non-specular reflections and was used in combination with a movable polyethylene UCN remover inserted from the top for cleaning of above-threshold UCNs. Loss due to UCN depolarization was suppressed with a minimum 2 mT bias field. Without using the UCN remover, a total storage time constant of $(712 pm 19)$ s was observed; with the remover inserted for 80 s and used at either 80 cm or 65 cm from the bottom of the trap, time constants of $(824 pm 32)$ s and $(835 pm 36)$ s were observed. Combining the latter two values, a neutron lifetime of $tau_{rm n} = (887 pm 39)$ s is extracted after primarily correcting for losses at the UCN valve. The time constants of the UCN population during cleaning were observed and compared to calculations based on UCN kinetic theory as well as Monte-Carlo studies. These calculations are used to predict above-threshold populations of $sim 5%$, $sim 0.5%$ and $sim 10^{-12}%$ remaining after cleaning in the no remover, 80~cm remover and 65~cm remover measurements. Thus, by using a non-specular reflector covering the entire bottom of the trap and a remover at the top of the trap, we have established an effective cleaning procedure for removing a major systematic effect in high-precision $tau_{rm n}$ experiments with magnetically stored UCNs.
Optical pumping of He-3 produces large (hyper) nuclear-spin polarizations independent of the magnetic resonance imaging (MRI) field strength. This allows lung MRI to be performed at reduced fields with many associated benefits, such as lower tissue susceptibility gradients and decreased power absorption rates. Here we present results of 2D imaging as well as accurate 1D gas diffusion mapping of the human lung using He-3 at very low field (3 mT). Furthermore, measurements of transverse relaxation in zero applied gradient are shown to accurately track pulmonary oxygen partial pressure, opening the way for novel imaging sequences.
The design of a loop-gap-resonator RF coil optimized for ex vivo mouse brain microscopy at ultra high fields is described and its properties characterized using simulations, phantoms and experimental scans of mouse brains fixed in 10% formalin containing 4 mM Magnevist. The RF (B1) and magnetic field (B0) homogeneities are experimentally quantified and compared to electromagnetic simulations of the coil. The coils performance is also compared to a similarly sized surface coil and found to yield double the sensitivity. A three-dimensional gradient-echo (GRE) sequence is used to acquire high resolution mouse brain scans at 47 {mu}m3 resolution in 1.8 hours and a 20x20x19 {mu}m3 resolution in 27 hours. The high resolution obtained permitted clear visualization and identification of multiple structures in the ex vivo mouse brain and represents, to our knowledge, the highest resolution ever achieved for a whole mouse brain. Importantly, the coil design is simple and easy to construct.
We propose a new concept of magnetic focusing for targeting and accumulation of functionalized superparamagnetic nanoparticles in living organs through composite configurations of different permanent magnets. The proposed setups fulfill two fundamental requirements for in vivo experiments: 1) reduced size of the magnets to best focusing on small areas representing the targeted organs of mice and rats and 2) maximization of the magnetic driving force acting on the magnetic nanoparticles dispersed in blood. To this aim, several configurations of permanent magnets organized with different degrees of symmetry have been tested. The product B*grad(B) proportional to the magnetic force has been experimentally measured, over a wide area (20x20 mm^2), at a distance corresponding to the hypothetical distance of the mouse organ from the magnets. A non-symmetric configuration of mixed shape permanent magnets resulted in particularly promising to achieve the best performances for further in vivo experiments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا