Custom-Precision Mathematical Library Explorations for Code Profiling and Optimization


Abstract in English

The typical processors used for scientific computing have fixed-width data-paths. This implies that mathematical libraries were specifically developed to target each of these fixed precisions (binary16, binary32, binary64). However, to address the increasing energy consumption and throughput requirements of scientific applications, library and hardware designers are moving beyond this one-size-fits-all approach. In this article we propose to study the effects and benefits of using user-defined floating-point formats and target accuracies in calculations involving mathematical functions. Our tool collects input-data profiles and iteratively explores lower precisions for each call-site of a mathematical function in user applications. This profiling data will be a valuable asset for specializing and fine-tuning mathematical function implementations for a given application. We demonstrate the tools capabilities on SGP4, a satellite tracking application. The profile data shows the potential for specialization and provides insight into answering where it is useful to provide variable-precision designs for elementary function evaluation.

Download