Do you want to publish a course? Click here

Modeling in the Time of COVID-19: Statistical and Rule-based Mesoscale Models

69   0   0.0 ( 0 )
 Added by Ivan Viola
 Publication date 2020
  fields Biology
and research's language is English




Ask ChatGPT about the research

We present a new technique for rapid modeling and construction of scientifically accurate mesoscale biological models. Resulting 3D models are based on few 2D microscopy scans and the latest knowledge about the biological entity represented as a set of geometric relationships. Our new technique is based on statistical and rule-based modeling approaches that are rapid to author, fast to construct, and easy to revise. From a few 2D microscopy scans, we learn statistical properties of various structural aspects, such as the outer membrane shape, spatial properties and distribution characteristics of the macromolecular elements on the membrane. This information is utilized in 3D model construction. Once all imaging evidence is incorporated in the model, additional information can be incorporated by interactively defining rules that spatially characterize the rest of the biological entity, such as mutual interactions among macromolecules, their distances and orientations to other structures. These rules are defined through an intuitive 3D interactive visualization and modeling feedback loop. We demonstrate the utility of our approach on a use case of the modeling procedure of the SARS-CoV-2 virus particle ultrastructure. Its first complete atomistic model, which we present here, can steer biological research to new promising directions in fighting spread of the virus.



rate research

Read More

BioNetGen is an open-source software package for rule-based modeling of complex biochemical systems. Version 2.2 of the software introduces numerous new features for both model specification and simulation. Here, we report on these additions, discussing how they facilitate the construction, simulation, and analysis of larger and more complex models than previously possible.
Rule-based modeling is a powerful way to model kinetic interactions in biochemical systems. Rules enable a precise encoding of biochemical interactions at the resolution of sites within molecules, but obtaining an integrated global view from sets of rules remains challenging. Current automated approaches to rule visualization fail to address the complexity of interactions between rules, limiting either the types of rules that are allowed or the set of interactions that can be visualized simultaneously. There is a need for scalable visualization approaches that present the information encoded in rules in an intuitive and useful manner at different levels of detail. We have developed new automated approaches for visualizing both individual rules and complete rule-based models. We find that a more compact representation of an individual rule promotes promotes understanding the model assumptions underlying each rule. For global visualization of rule interactions, we have developed a method to synthesize a network of interactions between sites and processes from a rule-based model and then use a combination of user-defined and automated approaches to compress this network into a readable form. The resulting diagrams enable modelers to identify signaling motifs such as cascades, feedback loops, and feed-forward loops in complex models, as we demonstrate using several large-scale models. These capabilities are implemented within the BioNetGen framework but the approach is equally applicable to rule-based models specified in other formats.
We present a kinetic Monte Carlo method for simulating chemical transformations specified by reaction rules, which can be viewed as generators of chemical reactions, or equivalently, definitions of reaction classes. A rule identifies the molecular components involved in a transformation, how these components change, conditions that affect whether a transformation occurs, and a rate law. The computational cost of the method, unlike conventional simulation approaches, is independent of the number of possible reactions, which need not be specified in advance or explicitly generated in a simulation. To demonstrate the method, we apply it to study the kinetics of multivalent ligand-receptor interactions. We expect the method will be useful for studying cellular signaling systems and other physical systems involving aggregation phenomena.
After emerging in China in late 2019, the novel Severe acute respiratory syndrome-like coronavirus 2 (SARS-CoV-2) spread worldwide and as of early 2021, continues to significantly impact most countries. Only a small number of coronaviruses are known to infect humans, and only two are associated with the severe outcomes associated with SARS-CoV-2: Severe acute respiratory syndrome-related coronavirus, a closely related species of SARS-CoV-2 that emerged in 2002, and Middle East respiratory syndrome-related coronavirus, which emerged in 2012. Both of these previous epidemics were controlled fairly rapidly through public health measures, and no vaccines or robust therapeutic interventions were identified. However, previous insights into the immune response to coronaviruses gained during the outbreaks of severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) have proved beneficial to identifying approaches to the treatment and prophylaxis of novel coronavirus disease 2019 (COVID-19). A number of potential therapeutics against SARS-CoV-2 and the resultant COVID-19 illness were rapidly identified, leading to a large number of clinical trials investigating a variety of possible therapeutic approaches being initiated early on in the pandemic. As a result, a small number of therapeutics have already been authorized by regulatory agencies such as the Food and Drug Administration (FDA) in the United States, and many other therapeutics remain under investigation. Here, we describe a range of approaches for the treatment of COVID-19, along with their proposed mechanisms of action and the current status of clinical investigation into each candidate. The status of these investigations will continue to evolve, and this review will be updated as progress is made.
We analyze risk factors correlated with the initial transmission growth rate of the recent COVID-19 pandemic in different countries. The number of cases follows in its early stages an almost exponential expansion; we chose as a starting point in each country the first day $d_i$ with 30 cases and we fitted for 12 days, capturing thus the early exponential growth. We looked then for linear correlations of the exponents $alpha$ with other variables, for a sample of 126 countries. We find a positive correlation, {it i.e. faster spread of COVID-19}, with high confidence level with the following variables, with respective $p$-value: low Temperature ($4cdot10^{-7}$), high ratio of old vs.~working-age people ($3cdot10^{-6}$), life expectancy ($8cdot10^{-6}$), number of international tourists ($1cdot10^{-5}$), earlier epidemic starting date $d_i$ ($2cdot10^{-5}$), high level of physical contact in greeting habits ($6 cdot 10^{-5}$), lung cancer prevalence ($6 cdot 10^{-5}$), obesity in males ($1 cdot 10^{-4}$), share of population in urban areas ($2cdot10^{-4}$), cancer prevalence ($3 cdot 10^{-4}$), alcohol consumption ($0.0019$), daily smoking prevalence ($0.0036$), UV index ($0.004$, 73 countries). We also find a correlation with low Vitamin D levels ($0.002-0.006$, smaller sample, $sim 50$ countries, to be confirmed on a larger sample). There is highly significant correlation also with blood types: positive correlation with types RH- ($3cdot10^{-5}$) and A+ ($3cdot10^{-3}$), negative correlation with B+ ($2cdot10^{-4}$). Several of the above variables are intercorrelated and likely to have common interpretations. We performed a Principal Component Analysis, in order to find their significant independent linear combinations. We also analyzed a possible bias: countries with low GDP-per capita might have less testing and we discuss correlation with the above variables.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا