Do you want to publish a course? Click here

Complete leading-order standard model corrections to quantum leptogenesis

270   0   0.0 ( 0 )
 Added by Paul Frederik Depta
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Thermal leptogenesis, in the framework of the standard model with three additional heavy Majorana neutrinos, provides an attractive scenario to explain the observed baryon asymmetry in the universe. It is based on the out-of-equilibrium decay of Majorana neutrinos in a thermal bath of standard model particles, which in a fully quantum field theoretical formalism is obtained by solving Kadanoff-Baym equations. So far, the leading two-loop contributions from leptons and Higgs particles are included, but not yet gauge corrections. These enter at three-loop level but, in certain kinematical regimes, require a resummation to infinite loop order for a result to leading order in the gauge coupling. In this work, we apply such a resummation to the calculation of the lepton number density. The full result for the simplest vanilla leptogenesis scenario is by $mathcal{O}(1)$ increased compared to that of quantum Boltzmann equations, and for the first time permits an estimate of all theoretical uncertainties. This step completes the quantum theory of leptogenesis and forms the basis for quantitative evaluations, as well as extensions to other scenarios.



rate research

Read More

We compute the production rate of the energy density carried by gravitational waves emitted by a Standard Model plasma in thermal equilibrium, consistently to leading order in coupling constants for momenta $ksim pi T$. Summing up the contributions from the full history of the universe, the highest temperature of the radiation epoch can be constrained by the so-called $N_{rm eff}$ parameter. The current theoretical uncertainty $Delta N_{rm eff} le 10^{-3}$ corresponds to $T_{rm max} le 2times 10^{17}$ GeV. In the course of the computation, we show how a subpart of the production rate can be determined with the help of standard packages, even if subsequently an IR subtraction and thermal resummation need to be implemented.
The first results on next-to-leading order QCD corrections to graviton-induced processes in hadron collisions in models of TeV-scale gravity are presented focusing on the case of dilepton pair production in bar p p and pp collisions. Distributions in the invariant mass Q, the longitudinal fraction x_F, the rapidity Y and the forward-backward asymmetry of the lepton pair are studied. The quantitative impact of the QCD corrections for searches of extra dimensions at hadron colliders is investigated. It turns out that at the LHC (sqrt{S}=14 TeV) the K-factor is rather large (K=1.6) for large invariant mass Q of the lepton pair, indicating the importance of accounting for these QCD corrections in the experimental search for TeV-scale gravity. At the Tevatron, the K-factor does not substantially deviate from the Standard Model value. However, its inclusion is necessitated to make the cross-section stable with respect to scale variations.
We explore here a new mechanism by which the out of equilibrium decay of heavy gravitinos, followed by possible R-parity violating decays in the Minimal Supersymmetric Standard Model (MSSM) can generate the baryon asymmetry of the universe. In this mechanism, gravitino decay produces a CP-asymmetry that is carried by squarks or sleptons. These particles then decay through R-parity violating operators generating a lepton asymmetry. The lepton asymmetry is converted into a baryon asymmetry by weak sphalerons, as in the familiar case of leptogenesis by Majorana neutrino decays. To ensure that the gravitino decays while the sphaleron is still in equilibrium, we obtain a lower bound on the gravitino mass, $m_{3/2} gtrsim 10^{8} GeV$, and therefore our mechanism requires a high scale of SUSY breaking, as well as minimum reheating temperature after inflation of $Tgtrsim 10^{12} GeV$ in order to for the gravitino density to be sufficiently large to generate the baryon asymmetry today. We consider each of the MSSMs relevant R-parity violating operators in turn, and derive constraints on parameters in order to give rise to a baryon asymmetry comparable to that observed today, consistent with low energy phenomenological bounds on SUSY models.
208 - E. Bagan , Patricia Ball , B. Fiol 1995
We calculate the complete ${cal O}(alpha_s)$ corrections to the quark decay $bto ccs$ taking full account of the quark masses, but neglecting penguin contributions. For a c to the b quark mass ratio $m_c/m_b= 0.3$ and a strange quark mass of $0.2,$GeV, we find that the next-to-leading order (NLO) corrections increase $Gamma(bto ccs)$ by $(32pm 15)%$ with respect to the leading order expression, where the uncertainty is mostly due to scale- and scheme-dependences. Combining this result with the known NLO and non-perturbative corrections to other B meson decay channels we obtain an updated value for the semileptonic branching ratio of B mesons, $B_{SL}$, of $(12.0pm 1.4)% $ using pole quark masses and $(11.2pm 1.7)% $ using running $overline{mbox{MS}}$ masses.
D0 and CDF collaborations at the Fermilab Tevatron have searched for non-standard-model single top-quark production and set upper limits on the anomalous top quark flavor-changing neutral current (FCNC) couplings $kappa^g_{tc}/Lambda$ and $kappa^g_{tu}/Lambda$ using the measurement of total cross section calculated at the next-to-leading order (NLO) in QCD. In this Letter, we report on the effect of anomalous FCNC couplings to various decay branching ratios of the top quark, calculated at the NLO. This result is not only mandatory for a consistent treatment of both the top quark production and decay via FCNC couplings by D0 and CDF at the Tevatron but is also important for the study of ATLAS and CMS sensitivity to these anomalous couplings at the CERN LHC. We find that the NLO corrections to the partial decay widths of the three decay channels $ tto q + g$, $ tto q + gamma$ and $ tto q + Z$ are at the order of 10% in magnitude and modify their branching ratios by about 20%, 0.4% and 2%, respectively, as compared to their leading order predictions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا