Background Model for the High-Energy Telescope of Insight-HXMT


Abstract in English

Accurate background estimation is essential for spectral and temporal analysis in astrophysics. In this work, we construct the in-orbit background model for the High-Energy Telescope (HE) of the Hard X-ray Modulation Telescope (dubbed as Insight-HXMT). Based on the two-year blank sky observations of Insight-HXMT/HE, we first investigate the basic properties of the background and find that both the background spectral shape and intensity have long-term evolution at different geographical sites. The entire earth globe is then divided into small grids, each with a typical area of 5x5 square degrees in geographical coordinate system. For each grid, an empirical function is used to describe the long-term evolution of each channel of the background spectrum; the intensity of the background can be variable and a modification factor is introduced to account for this variability by measuring the contemporary flux of the blind detector. For a given pointing observation, the background model is accomplished by integrating over the grids that are passed by the track of the satellite in each orbit. Such a background model is tested with both the blank sky observations and campaigns for observations of a series of celestial sources. The results show an average systematic error of 1.5% for the background energy spectrum (26-100 keV) under a typical exposure of 8 ks, and <3% for background light curve estimation (30-150 keV). Therefore, the background model introduced in this paper is included in the Insight-HXMT software as a standard part specialized for both spectral and temporal analyses.

Download