Do you want to publish a course? Click here

Symmetry lowering on the field-induced commensurate phase in CeRhIn$_5$

58   0   0.0 ( 0 )
 Added by Yoshihiko Ihara
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Temperature dependence of the $^{115}$In-NMR spectra of CeRhIn$_5$ is studied with the external magnetic fields 10$^circ$ off the [100] and [001] axes. Our detailed analyses confirm that the AFM3 phase breaks the four-fold spin symmetry with the commensurate ordering vector of $Q = (0.5, 0.5,0.25)$. Based on the observation of anistropic hyperfine fields, we also propose the symmetry lowering of the electronic structure in the AFM3 phase.



rate research

Read More

72 - S. Mishra , J. Hornung , M. Raba 2021
We report a comprehensive de Haas--van Alphen (dHvA) study of the heavy-fermion material CeRhIn$_5$ in magnetic fields up to 70~T. Several dHvA frequencies gradually emerge at high fields as a result of magnetic breakdown. Among them is the thermodynamically important $beta_1$ branch, which has not been observed so far. Comparison of our angule-dependent dHvA spectra with those of the non-$4f$ compound LaRhIn$_5$ and with band-structure calculations evidences that the Ce $4f$ electrons in CeRhIn$_5$ remain localized over the whole field range. This rules out any significant Fermi-surface reconstruction, either at the suggested nematic phase transition at $B^{*}approx$ 30~T or at the putative quantum critical point at $B_c simeq$ 50~T. Our results rather demonstrate the robustness of the Fermi surface and the localized nature of the 4$f$ electrons inside and outside of the antiferromagnetic phase.
We discuss recent results on the heavy fermion superconductor CeRhIn$_5$ which presents ideal conditions to study the strong coupling between the suppression of antiferromagnetic order and the appearance of unconventional superconductivity. The appearance of superconductivity as function of pressure is strongly connected to the suppression of the magnetic order. Under magnetic field, the re-entrance of magnetic order inside the superconducting state shows that antiferromagnetism nucleates in the vortex cores. The suppression of antiferromagnetism in CeRhIn$_5$ by Sn doping is compared to that under hydrostatic pressure.
211 - L. Jiao , Y. Chen , Y. Kohama 2015
Conventional, thermally-driven continuous phase transitions are described by universal critical behaviour that is independent of the specific microscopic details of a material. However, many current studies focus on materials that exhibit quantum-driven continuous phase transitions (quantum critical points, or QCPs) at absolute zero temperature. The classification of such QCPs and the question of whether they show universal behaviour remain open issues. Here we report measurements of heat capacity and de Haas-van Alphen (dHvA) oscillations at low temperatures across a field-induced antiferromagnetic QCP (B$_{c0}simeq$ 50 T) in the heavy-fermion metal CeRhIn$_5$. A sharp, magnetic-field-induced change in Fermi surface is detected both in the dHvA effect and Hall resistivity at B$_0^*simeq$ 30 T, well inside the antiferromagnetic phase. Comparisons with band-structure calculations and properties of isostructural CeCoIn$_5$ suggest that the Fermi-surface change at B$_0^*$ is associated with a localized to itinerant transition of the Ce-4f electrons in CeRhIn$_5$. Taken in conjunction with pressure data, our results demonstrate that at least two distinct classes of QCP are observable in CeRhIn$_5$, a significant step towards the derivation of a universal phase diagram for QCPs.
We present core level non-resonant inelastic x-ray scattering (NIXS) data of the heavy fermion compounds CeCoIn$_5$ and CeRhIn$_5$ measured at the Ce $N_{4,5}$-edges. The higher than dipole transitions in NIXS allow determining the orientation of the $Gamma_7$ crystal-field ground-state orbital within the unit cell. The crystal-field parameters of the Ce$M$In$_5$ compounds and related substitution phase diagrams have been investigated in great detail in the past; however, whether the ground-state wavefunction is the $Gamma_7^+$ ($x^2,-,y^2$) or $Gamma_7^-$ ($xy$ orientation) remained undetermined. We show that the $Gamma_7^-$ doublet with lobes along the (110) direction forms the ground state in CeCoIn$_5$ and CeRhIn$_5$. For CeCoIn$_5$, however, we find also some contribution of the first excited state crystal-field state in the ground state due to the stronger hybridization of 4$f$ and conduction electrons, suggesting a smaller $alpha^2$ value than originally anticipated from x-ray absorption. A comparison is made to the results of existing density functional theory plus dynamical mean-field theory calculations.
110 - S. Mishra , A. Demuer , D. Aoki 2021
CeRhIn$_5$ is a prototypical antiferromagnetic heavy-fermion compound, whose behavior in a magnetic field is unique. A magnetic field applied in the basal plane of the tetragonal crystal structure induces two additional phase transitions. When the magnetic field is applied along, or close to, the $c$ axis, a new phase characterized by a pronounced in-plane electronic anisotropy emerges at $B^* approx$ 30 T, well below the critical field, $B_c simeq$ 50 T, to suppress the antiferromagnetic order. The exact origin of this new phase, originally suggested to be an electronic-nematic state, remains elusive. Here we report low-temperature specific-heat measurements in CeRhIn$_5$ in high static magnetic fields up to 36 T applied along both the $a$ and $c$ axes. For fields applied along the $a$ axis, we confirmed the previously suggested phase diagram, and extended it to higher fields. This allowed us to observe a triple point at $sim$ 30 T, where the first-order transition from an incommensurate to commensurate magnetic structure merges into the onset of the second-order antiferromagnetic transition. For fields applied along the $c$ axis, we observed a small but distinct anomaly at $B^*$, which we discuss in terms of a possible field-induced transition, probably weakly first-order. We further suggest that the transition corresponds to a change of magnetic structure. We revise magnetic phase diagrams of CeRhIn$_5$ for both principal orientations of the magnetic field based entirely on thermodynamic anomalies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا