No Arabic abstract
Location privacy has been extensively studied in the literature. However, existing location privacy models are either not rigorous or not customizable, which limits the trade-off between privacy and utility in many real-world applications. To address this issue, we propose a new location privacy notion called PGLP, i.e., textit{Policy Graph based Location Privacy}, providing a rich interface to release private locations with customizable and rigorous privacy guarantee. First, we design the privacy metrics of PGLP by extending differential privacy. Specifically, we formalize a users location privacy requirements using a textit{location policy graph}, which is expressive and customizable. Second, we investigate how to satisfy an arbitrarily given location policy graph under adversarial knowledge. We find that a location policy graph may not always be viable and may suffer textit{location exposure} when the attacker knows the users mobility pattern. We propose efficient methods to detect location exposure and repair the policy graph with optimal utility. Third, we design a private location trace release framework that pipelines the detection of location exposure, policy graph repair, and private trajectory release with customizable and rigorous location privacy. Finally, we conduct experiments on real-world datasets to verify the effectiveness of the privacy-utility trade-off and the efficiency of the proposed algorithms.
We firstly suggest privacy protection cache policy applying the duty to delete personal information on a hybrid main memory system. This cache policy includes generating random data and overwriting the random data into the personal information. Proposed cache policy is more economical and effective regarding perfect deletion of data.
In recent years, concerns about location privacy are increasing with the spread of location-based services (LBSs). Many methods to protect location privacy have been proposed in the past decades. Especially, perturbation methods based on Geo-Indistinguishability (Geo-I), which randomly perturb a true location to a pseudolocation, are getting attention due to its strong privacy guarantee inherited from differential privacy. However, Geo-I is based on the Euclidean plane even though many LBSs are based on road networks (e.g. ride-sharing services). This causes unnecessary noise and thus an insufficient tradeoff between utility and privacy for LBSs on road networks. To address this issue, we propose a new privacy notion, Geo-Graph-Indistinguishability (GG-I), for locations on a road network to achieve a better tradeoff. We propose Graph-Exponential Mechanism (GEM), which satisfies GG-I. Moreover, we formalize the optimization problem to find the optimal GEM in terms of the tradeoff. However, the computational complexity of a naive method to find the optimal solution is prohibitive, so we propose a greedy algorithm to find an approximate solution in an acceptable amount of time. Finally, our experiments show that our proposed mechanism outperforms a Geo-Is mechanism with respect to the tradeoff.
Governments and researchers around the world are implementing digital contact tracing solutions to stem the spread of infectious disease, namely COVID-19. Many of these solutions threaten individual rights and privacy. Our goal is to break past the false dichotomy of effective versus privacy-preserving contact tracing. We offer an alternative approach to assess and communicate users risk of exposure to an infectious disease while preserving individual privacy. Our proposal uses recent GPS location histories, which are transformed and encrypted, and a private set intersection protocol to interface with a semi-trusted authority. There have been other recent proposals for privacy-preserving contact tracing, based on Bluetooth and decentralization, that could further eliminate the need for trust in authority. However, solutions with Bluetooth are currently limited to certain devices and contexts while decentralization adds complexity. The goal of this work is two-fold: we aim to propose a location-based system that is more privacy-preserving than what is currently being adopted by governments around the world, and that is also practical to implement with the immediacy needed to stem a viral outbreak.
In this demonstration, we present a privacy-preserving epidemic surveillance system. Recently, many countries that suffer from coronavirus crises attempt to access citizens location data to eliminate the outbreak. However, it raises privacy concerns and may open the doors to more invasive forms of surveillance in the name of public health. It also brings a challenge for privacy protection techniques: how can we leverage peoples mobile data to help combat the pandemic without scarifying our location privacy. We demonstrate that we can have the best of the two worlds by implementing policy-based location privacy for epidemic surveillance. Specifically, we formalize the privacy policy using graphs in light of differential privacy, called policy graph. Our system has three primary functions for epidemic surveillance: location monitoring, epidemic analysis, and contact tracing. We provide an interactive tool allowing the attendees to explore and examine the usability of our system: (1) the utility of location monitor and disease transmission model estimation, (2) the procedure of contact tracing in our systems, and (3) the privacy-utility trade-offs w.r.t. different policy graphs. The attendees can find that it is possible to have the full functionality of epidemic surveillance while preserving location privacy.
Location-Based Services (LBSs) provide invaluable aid in the everyday activities of many individuals, however they also pose serious threats to the user privacy. There is, therefore, a growing interest in the development of mechanisms to protect location privacy during the use of LBSs. Nowadays, the most popular methods are probabilistic, and the so-called optimal method achieves an optimal trade-off between privacy and utility by using linear optimization techniques. Unfortunately, due to the complexity of linear programming, the method is unfeasible for a large number n of locations, because the constraints are $O(n^3)$. In this paper, we propose a technique to reduce the number of constraints to $O(n^2)$, at the price of renouncing to perfect optimality. We show however that on practical situations the utility loss is quite acceptable, while the gain in performance is significant.