Electromagnetically Induced Transparency in a mono-isotopic $^{167}$Er:$^7$LiYF$_4$ crystal below 1 Kelvin


Abstract in English

Electromagnetically induced transparency allows for controllable change of absorption properties which can be exploited in a number of applications including optical quantum memory. In this paper, we present a study of the electromagnetically induced transparency in $^{167}$Er:$^6$LiYF$_4$ crystal at low magnetic fields and ultra-low temperatures. Experimental measurement scheme employs optical vector network analysis which provides high precision measurement of amplitude, phase and pulse delay. We found that sub-Kelvin temperatures are the necessary requirement for studying electromagnetically induced transparency in this crystal at low fields. A good agreement between theory and experiment is achieved taking into account the phonon bottleneck effect.

Download