Half-Quadratic Alternating Direction Method of Multipliers for Robust Orthogonal Tensor Approximation


Abstract in English

Higher-order tensor canonical polyadic decomposition (CPD) with one or more of the latent factor matrices being columnwisely orthonormal has been well studied in recent years. However, most existing models penalize the noises, if occurring, by employing the least squares loss, which may be sensitive to non-Gaussian noise or outliers, leading to bias estimates of the latent factors. In this paper, based on the maximum a posterior estimation, we derive a robust orthogonal tensor CPD model with Cauchy loss, which is resistant to heavy-tailed noise or outliers. By exploring the half-quadratic property of the model, a new method, which is termed as half-quadratic alternating direction method of multipliers (HQ-ADMM), is proposed to solve the model. Each subproblem involved in HQ-ADMM admits a closed-form solution. Thanks to some nice properties of the Cauchy loss, we show that the whole sequence generated by the algorithm globally converges to a stationary point of the problem under consideration. Numerical experiments on synthetic and real data demonstrate the efficiency and robustness of the proposed model and algorithm.

Download