Do you want to publish a course? Click here

Energy sensitivity of the GRAPES-3 EAS array for primary cosmic ray protons

161   0   0.0 ( 0 )
 Added by B. Hariharan
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Low energy ground-based cosmic ray air shower experiments generally have energy threshold in the range of a few tens to a few hundreds of TeV. The shower observables are measured indirectly with an array of detectors. The atmospheric absorption of low energy secondaries limits their detection frequencies at the Earths surface. However, due to selection effects, a tiny fraction of low energy showers, which are produced in the lower atmosphere can reach the observational level. But, due to less information of shower observables, the reconstruction of these showers are arduous. Hence, it is believed that direct measurements by experiments aboard on satellites and balloon flights are more reliable at low energies. Despite having very small efficiency ($sim$0.1%) at low energies, the large acceptance ($sim$5 m$^2$sr) of GRAPES-3 experiment allows observing primary cosmic rays down below to $sim$1 TeV and opens up the possibility to measure primary energy spectrum spanning from a few TeV to beyond cosmic ray knee (up to 10$^{16}$ eV), covering five orders of magnitude. The GRAPES-3 energy threshold for primary protons through Monte Carlo simulations are calculated, which gives reasonably good agreement with data. Furthermore, the total efficiencies and acceptance are also calculated for protons primaries. The ability of GRAPES-3 experiment to cover such a broader energy range may provide a unique handle to bridge the energy spectrum between direct measurements at low energies and indirect measurements at ultra-high energies.



rate research

Read More

The angular resolution of an extensive air shower (EAS) array plays a critical role in determining its sensitivity for the detection of point $gamma$-ray sources in the multi-TeV energy range. The GRAPES-3 an EAS array located at Ooty in India (11.4$^{circ}$N, 76.7$^{circ}$E, 2200 m altitude) is designed to study $gamma$-rays in the TeV-PeV energy range. It comprises of a dense array of 400 plastic scintillators deployed over an area of 25000 m$^2$ and a large area (560 m$^2$) muon telescope. A new statistical method allowed real time determination of the propagation delay of each detector in the GRAPES-3 array. The shape of shower front is known to be curved and here the details of a new method developed for accurate measurement of the shower front curvature is presented. These two developments have led to a sizable improvement in the angular resolution of GRAPES-3 array. It is shown that the curvature depends on the size and age of an EAS. By employing two different techniques, namely, the odd-even and the left-right methods, independent estimates of the angular resolution are obtained. The odd-even method estimates the best achievable resolution of the array. For obtaining the angular resolution, the left-right method is used after implementing the size and age dependent curvature corrections. A comparison of the angular resolution as a function of EAS energy by these two methods shows them be virtually indistinguishable. The angular resolution of GRAPES-3 array is 47$^{prime}$ for energies E$>$5 TeV and improves to 17$^{prime}$ at E$>$100 TeV and finally approaching 10$^{prime}$ at E$>$500 TeV.
The Experimental complex NEVOD includes several different setups for studying various components of extensive air showers (EAS) in the energy range from 10^10 to 10^18 eV. The NEVOD-EAS array for detection of the EAS electron-photon component began its data taking in 2018. It is a distributed system of scintillation detectors installed over an area of about 10^4 m^2. A distinctive feature of this array is its cluster organization with different-altitude layout of the detecting elements. The main goal of the NEVOD-EAS array is to obtain an estimation of the primary particle energy for events measured by various detectors of the Experimental complex NEVOD. This paper describes the design, operation principles and data processing of the NEVOD-EAS array. The criteria for the event selection and the accuracy of the EAS parameters reconstruction obtained on the simulated events are discussed. The results of the preliminary analysis of experimental data obtained during a half-year operation are presented.
Preliminary results of one year anisotropy measurement in the energy range 10^{13} -10^{14} eV as a function of energy are presented. The results are compared for two methods of data analysis: the standard one with meteo correction approach in use and another one so-called East minus West method. Amplitudes and phases of anisotropy for three median energies E = 25 TeV, E = 75 TeV and E = 120 TeV are reported. Brief consideration of amplitude-phase dependence of anisotropy on energy is expounded.
A new hybrid experiment has been started by AS{gamma} experiment at Tibet, China, since August 2011, which consists of a low threshold burst-detector-grid (YAC-II, Yangbajing Air shower Core array), the Tibet air-shower array (Tibet-III) and a large underground water Cherenkov muon detector (MD). In this paper, the capability of the measurement of the chemical components (proton, helium and iron) with use of the (Tibet-III+YAC-II) is investigated by means of an extensive Monte Carlo simulation in which the secondary particles are propagated through the (Tibet-III+YAC-II) array and an artificial neural network (ANN) method is applied for the primary mass separation. Our simulation shows that the new installation is powerful to study the chemical compositions, in particular, to obtain the primary energy spectrum of the major component at the knee.
132 - K. Singh , M. Mevius , O. Scholten 2011
When an ultra-high energy neutrino or cosmic ray strikes the Lunar surface a radio-frequency pulse is emitted. We plan to use the LOFAR radio telescope to detect these pulses. In this work we propose an efficient trigger implementation for LOFAR optimized for the observation of short radio pulses.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا