No Arabic abstract
We investigate classic diffusion with the added feature that a diffusing particle is reset to its starting point each time the particle reaches a specified threshold. In an infinite domain, this process is non-stationary and its probability distribution exhibits rich features. In a finite domain, we define a non-trivial optimization in which a cost is incurred whenever the particle is reset and a reward is obtained while the particle stays near the reset point. We derive the condition to optimize the net gain in this system, namely, the reward minus the cost.
We combine the processes of resetting and first-passage to define emph{first-passage resetting}, where the resetting of a random walk to a fixed position is triggered by a first-passage event of the walk itself. In an infinite domain, first-passage resetting of isotropic diffusion is non-stationary, with the number of resetting events growing with time as $sqrt{t}$. We calculate the resulting spatial probability distribution of the particle analytically, and also obtain this distribution by a geometric path decomposition. In a finite interval, we define an optimization problem that is controlled by first-passage resetting; this scenario is motivated by reliability theory. The goal is to operate a system close to its maximum capacity without experiencing too many breakdowns. However, when a breakdown occurs the system is reset to its minimal operating point. We define and optimize an objective function that maximizes the reward (being close to maximum operation) minus a penalty for each breakdown. We also investigate extensions of this basic model to include delay after each reset and to two dimensions. Finally, we study the growth dynamics of a domain in which the domain boundary recedes by a specified amount whenever the diffusing particle reaches the boundary after which a resetting event occurs. We determine the growth rate of the domain for the semi-infinite line and the finite interval and find a wide range of behaviors that depend on how much the recession occurs when the particle hits the boundary.
The time of the first occurrence of a threshold crossing event in a stochastic process, known as the first passage time, is of interest in many areas of sciences and engineering. Conventionally, there is an implicit assumption that the notional sensor monitoring the threshold crossing event is always active. In many realistic scenarios, the sensor monitoring the stochastic process works intermittently. Then, the relevant quantity of interest is the $textit{first detection time}$, which denotes the time when the sensor detects the threshold crossing event for the first time. In this work, a birth-death process monitored by a random intermittent sensor is studied, for which the first detection time distribution is obtained. In general, it is shown that the first detection time is related to, and is obtainable from, the first passage time distribution. Our analytical results display an excellent agreement with simulations. Further, this framework is demonstrated in several applications -- the SIS compartmental and logistic models, and birth-death processes with resetting. Finally, we solve the practically relevant problem of inferring the first passage time distribution from the first detection time.
We study the diffusive motion of a test particle in a two-dimensional comb structure consisting of a main backbone channel with continuously distributed side branches, in the presence of stochastic Markovian resetting to the initial position of the particle. We assume that the motion along the infinitely long branches is biased by a confining potential. The crossover to the steady state is quantified in terms of a large deviation function, which is derived for the first time for comb structures in present paper. We show that the relaxation region is demarcated by a nonlinear light-cone beyond which the system is evolving in time. We also investigate the first-passage times along the backbone and calculate the mean first-passage time and optimal resetting rate.
We study the random processes with non-local memory and obtain new solutions of the Mori-Zwanzig equation describing non-markovian systems. We analyze the system dynamics depending on the amplitudes $ u$ and $mu_0$ of the local and non-local memory and pay attention to the line in the ($ u$, $mu_0$)-plane separating the regions with asymptotically stationary and non-stationary behavior. We obtain general equations for such boundaries and consider them for three examples of the non-local memory functions. We show that there exist two types of the boundaries with fundamentally different system dynamics. On the boundaries of the first type, the diffusion with memory takes place, whereas on borderlines of the second type, the phenomenon of noise-induced resonance can be observed. A distinctive feature of noise-induced resonance in the systems under consideration is that it occurs in the absence of an external regular periodic force. It takes place due to the presence of frequencies in the noise spectrum, which are close to the self-frequency of the system. We analyze also the variance of the process and compare its behavior for regions of asymptotic stationarity and non-stationarity, as well as for diffusive and noise-induced-resonance borderlines between them.
We study experimentally, numerically and theoretically the optimal mean time needed by a Brownian particle, freely diffusing either in one or two dimensions, to reach, within a tolerance radius $R_{text tol}$, a target at a distance $L$ from an initial position in the presence of resetting. The reset position is Gaussian distributed with width $sigma$. We derived and tested two resetting protocols, one with a periodic and one with random (Poissonian) resetting times. We computed and measured the full first-passage probability distribution that displays spectacular spikes immediately after each resetting time for close targets. We study the optimal mean first-passage time as a function of the resetting period/rate for different target distances (values of the ratios $b=L/sigma$) and target size ($a=R_text{tol}/L$). We find an interesting phase transition at a critical value of $b$, both in one and two dimensions. The details of the calculations as well as experimental setup and limitations are discussed.