Do you want to publish a course? Click here

Cherenkov Radiation of a Charge Flying through the Inverted Conical Target

63   0   0.0 ( 0 )
 Added by Sergey N. Galyamin
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Radiation generated by a charge moving through a vacuum channel in a dielectric cone is analyzed. It is assumed that the charge moves through the cone from the apex side to the base side (the case of inverted cone). The cone size is supposed to be much larger than the wavelengths under consideration. We calculate the wave field outside the target using the aperture method developed in our previous papers. Contrary to the problems considered earlier, here the wave which incidences directly on the aperture is not the main wave, while the wave once reflected from the lateral surface is much more important. The general formulas for the radiation field are obtained, and the particular cases of the ray optics area and the Fraunhofer area are analyzed. Significant physical effects including the phenomenon of Cherenkov spotlight are discussed. In particular it is shown that this phenomenon allows reaching essential enhancement of the radiation intensity in the far-field region at certain selection of the problem parameters. Owing to the inverted cone geometry, this effect can be realized for arbitrary charge velocity, including the ultra relativistic case, by proper selection of the cone material and the apex angle. Typical radiation patterns in the far-field area are demonstrated.



rate research

Read More

Cherenkov radiation (CR) generated by a charge moving through a hollow conical target made of dielectric material is analyzed. We consider two cases: the charge moves from the base of the cone to its top (``straight cone) or from the top to the base (``inverted cone). Unlike previous papers, a nonzero shift of the charge trajectory from the symmetry axis is taken into account which leads to generation of asymmetric CR. The most interesting effect is the phenomenon of ``Cherenkov spotlight which has been reported earlier for axially symmetric problems. This effect allows essential enhancement of the CR intensity in the far-field region by proper selection of the targets parameters and charge velocity. Here we describe the influence of charge shift on CR far-field patterns paying the main attention to the ``Cherenkov spotlight regime. Influence of variation of the charge speed on this phenomenon is also investigated.
Radiation of charged particles moving in the presence of dielectric targets is of significant interest for various applications in the accelerator and beam physics. The size of these targets is typically much larger than the wavelengths under consideration. This fact gives us an obvious small parameter of the problem and allows developing approximate methods for analysis. We develop two methods, which are called the ray optics method and the aperture method. In the present paper, we apply these methods to analysis of Cherenkov radiation from a charge moving through a vacuum channel in a solid dielectric sphere. We present the main analytical results and describe the physical effects. In particular, it is shown that the radiation field possesses an expressed maximum at a certain distance from the sphere at the Cherenkov angle. Additionally, we perform simulations in COMSOL Multiphysics and show a good agreement between numerical and analytical results.
We propose a new type of axisymmetric dielectric target which effectively concentrates Cherenkov radiation (CR) generated in the bulk of the material into a small vicinity of focus point. It can be called the axicon-based concentrator for CR. A theoretical investigation of radiation field produced by a charge moving through the discussed radiator is performed for the general case where a charge trajectory is shifted with respect to the structure axis. The idea of dielectric target with specific profile of the outer surface was presented and developed in our preceeding papers. However, contrary to the previous configuration of such a target (which was investigated for both centered and shifted charge trajectory), the current version allows efficient concentration of CR energy from relativistic particles, making this device extremely prospective for various applications.
A problem of diffraction of a symmetrical transverse magnetic mode $ text{TM}_{0l} $ by an open-ended cylindrical waveguide corrugated inside is considered. A depth and a period of corrugations are supposed to be much less than the wavelength and the waveguide radius. Therefore a corrugated waveguide wall can be described in terms of equivalent boundary conditions, i.e. a corresponding impedance boundary condition can be applied. Both vacuum case and the case of uniform dielectric filling of the waveguide is considered. The diffraction problem is solved using the modified tayloring technique in Jones formulation. Solution of the Wiener-Hopf-Fock equation of the problem is used to obtain an infinite linear system for reflection coefficients, the latter can be solved numerically using the reduction technique.
118 - Sabine Riemann 2018
The design of the conversion target for the undulator-based ILC positron source is still under development. One important issue is the cooling of the target. Here, the status of the design studies for cooling by thermal radiation is presented.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا