Do you want to publish a course? Click here

Geometric-Phase Waveplates for Free-Form Dark Hollow beams

75   0   0.0 ( 0 )
 Added by Bruno Piccirillo Dr
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate the possibility to create optical beams with phase singularities engraved into exotic intensity landscapes imitating the shapes of a large variety of diverse plane curves. To achieve this aim, we have developed a method for directly encoding the geometric properties of some selected curve into a single azimuthal phase factor without passing through indirect encryption methods based on lengthy numerical procedures. The outcome is utilized to mould the optic axis distribution of a liquid-crystal-based inhomogeneous waveplate. The latter is finally used to sculpt the wavefront of an input optical gaussian beam via Pancharatnam-Berry phase.



rate research

Read More

The advancement of 3D-printing opens up a new way of constructing affordable custom terahertz (THz) components due to suitable printing resolution and THz transparency of polymer materials. We present a way of calculating, designing and fabricating a THz waveplate that phase-modulates an incident THz beam ({lambda}=2.14 mm) in order to create a predefined intensity profile of the optical wavefront on a distant image plane. Our calculations were performed for two distinct target intensities with the use of a modified Gerchberg-Saxton algorithm. The resulting phase-modulating profiles were used to model the polyactide elements, which were printed out with a commercially available 3D-printer. The results were tested in an THz experimental setup equipped with a scanning option and they showed good agreement with theoretical predictions.
Interference between multiple distinct paths is a defining property of quantum physics, where paths may involve actual physical trajectories, as in interferometry, or transitions between different internal (e.g. spin) states, or both. A hallmark of quantum coherent evolution is the possibility to interact with a system multiple times in a phase-preserving manner. This principle underpins powerful multi-dimensional optical and nuclear magnetic resonance spectroscopies and related techniques, including Ramseys method of separated oscillatory fields used in atomic clocks. Previously established for atomic, molecular and quantum dot systems, recent developments in the optical quantum state preparation of free electron beams suggest a transfer of such concepts to the realm of ultrafast electron imaging and spectroscopy. Here, we demonstrate the sequential coherent interaction of free electron states with two spatially separated, phase-controlled optical near-fields. Ultrashort electron pulses are acted upon in a tailored nanostructure featuring two near-field regions with anisotropic polarization response. The amplitude and relative phase of these two near-fields are independently controlled by the incident polarization state, allowing for constructive and destructive quantum interference of the subsequent interactions. Future implementations of such electron-light interferometers may yield unprecedented access to optically phase-resolved electronic dynamics and dephasing mechanisms with attosecond precision.
Diffraction-free optical beams propagate freely without change in shape and scale. Monochromatic beams that avoid diffractive spreading require two-dimensional transverse profiles, and there are no corresponding solutions for profiles restricted to one transverse dimension. Here, we demonstrate that the temporal degree of freedom can be exploited to efficiently synthesize one-dimensional pulsed optical sheets that propagate self-similarly in free space. By introducing programmable conical (hyperbolic, parabolic, or elliptical) spectral correlations between the beams spatio-temporal degrees of freedom, a continuum of families of axially invariant pulsed localized beams is generated. The spectral loci of such beams are the reduced-dimensionality trajectories at the intersection of the light-cone with spatio-temporal spectral planes. Far from being exceptional, self-similar axial propagation is a generic feature of fields whose spatial and temporal degrees of freedom are tightly correlated. These one-dimensional `space-time beams can be useful in optical sheet microscopy, nonlinear spectroscopy, and non-contact measurements.
We report on an interferometry-based measurement of the phase and group velocities of optical Bessel beams, providing confirmation of their superluminal character in the non-diffractive region. The measurements were performed in free space with a continuous wave laser and femtosecond pulses for phase and group velocities respectively. The Bessel beams were produced using a conical mirror.
In this letter, we propose a general real-space method for the generation of nonparaxial accelerating beams with arbitrary predefined convex trajectories. Our results lead to closed-form expressions for the required phase at the input plane. We present such closed-form results for a variety of caustic curves: besides circular, elliptic, and parabolic, we find for the first time general power-law and exponential trajectories. Furthermore, by changing the initial amplitude we can design different intensity profiles along the caustic.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا