Do you want to publish a course? Click here

From Zero to Hero: On the Limitations of Zero-Shot Cross-Lingual Transfer with Multilingual Transformers

87   0   0.0 ( 0 )
 Added by Goran Glava\\v{s}
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Massively multilingual transformers pretrained with language modeling objectives (e.g., mBERT, XLM-R) have become a de facto default transfer paradigm for zero-shot cross-lingual transfer in NLP, offering unmatched transfer performance. Current downstream evaluations, however, verify their efficacy predominantly in transfer settings involving languages with sufficient amounts of pretraining data, and with lexically and typologically close languages. In this work, we analyze their limitations and show that cross-lingual transfer via massively multilingual transformers, much like transfer via cross-lingual word embeddings, is substantially less effective in resource-lean scenarios and for distant languages. Our experiments, encompassing three lower-level tasks (POS tagging, dependency parsing, NER), as well as two high-level semantic tasks (NLI, QA), empirically correlate transfer performance with linguistic similarity between the source and target languages, but also with the size of pretraining corpora of target languages. We also demonstrate a surprising effectiveness of inexpensive few-shot transfer (i.e., fine-tuning on a few target-language instances after fine-tuning in the source) across the board. This suggests that additional research efforts should be invested to reach beyond the limiting zero-shot conditions.



rate research

Read More

Previous works mainly focus on improving cross-lingual transfer for NLU tasks with multilingual pretrained encoder (MPE), or improving the translation performance on NMT task with BERT. However, how to improve the cross-lingual transfer of NMT model with multilingual pretrained encoder is under-explored. In this paper, we focus on a zero-shot cross-lingual transfer task in NMT. In this task, the NMT model is trained with one parallel dataset and an off-the-shelf MPE, then is directly tested on zero-shot language pairs. We propose SixT, a simple yet effective model for this task. The SixT model leverages the MPE with a two-stage training schedule and gets further improvement with a position disentangled encoder and a capacity-enhanced decoder. The extensive experiments prove that SixT significantly improves the translation quality of the unseen languages. With much less computation cost and training data, our model achieves better performance on many-to-English testsets than CRISS and m2m-100, two strong multilingual NMT baselines.
Learning what to share between tasks has been a topic of great importance recently, as strategic sharing of knowledge has been shown to improve downstream task performance. This is particularly important for multilingual applications, as most languages in the world are under-resourced. Here, we consider the setting of training models on multiple different languages at the same time, when little or no data is available for languages other than English. We show that this challenging setup can be approached using meta-learning, where, in addition to training a source language model, another model learns to select which training instances are the most beneficial to the first. We experiment using standard supervised, zero-shot cross-lingual, as well as few-shot cross-lingual settings for different natural language understanding tasks (natural language inference, question answering). Our extensive experimental setup demonstrates the consistent effectiveness of meta-learning for a total of 15 languages. We improve upon the state-of-the-art for zero-shot and few-shot NLI (on MultiNLI and XNLI) and QA (on the MLQA dataset). A comprehensive error analysis indicates that the correlation of typological features between languages can partly explain when parameter sharing learned via meta-learning is beneficial.
Transferring representations from large supervised tasks to downstream tasks has shown promising results in AI fields such as Computer Vision and Natural Language Processing (NLP). In parallel, the recent progress in Machine Translation (MT) has enabled one to train multilingual Neural MT (NMT) systems that can translate between multiple languages and are also capable of performing zero-shot translation. However, little attention has been paid to leveraging representations learned by a multilingual NMT system to enable zero-shot multilinguality in other NLP tasks. In this paper, we demonstrate a simple framework, a multilingual Encoder-Classifier, for cross-lingual transfer learning by reusing the encoder from a multilingual NMT system and stitching it with a task-specific classifier component. Our proposed model achieves significant improvements in the English setup on three benchmark tasks - Amazon Reviews, SST and SNLI. Further, our system can perform classification in a new language for which no classification data was seen during training, showing that zero-shot classification is possible and remarkably competitive. In order to understand the underlying factors contributing to this finding, we conducted a series of analyses on the effect of the shared vocabulary, the training data type for NMT, classifier complexity, encoder representation power, and model generalization on zero-shot performance. Our results provide strong evidence that the representations learned from multilingual NMT systems are widely applicable across languages and tasks.
Cross-language entity linking grounds mentions in multiple languages to a single-language knowledge base. We propose a neural ranking architecture for this task that uses multilingual BERT representations of the mention and the context in a neural network. We find that the multilingual ability of BERT leads to robust performance in monolingual and multilingual settings. Furthermore, we explore zero-shot language transfer and find surprisingly robust performance. We investigate the zero-shot degradation and find that it can be partially mitigated by a proposed auxiliary training objective, but that the remaining error can best be attributed to domain shift rather than language transfer.
Despite their success, large pre-trained multilingual models have not completely alleviated the need for labeled data, which is cumbersome to collect for all target languages. Zero-shot cross-lingual transfer is emerging as a practical solution: pre-trained models later fine-tuned on one transfer language exhibit surprising performance when tested on many target languages. English is the dominant source language for transfer, as reinforced by popular zero-shot benchmarks. However, this default choice has not been systematically vetted. In our study, we compare English against other transfer languages for fine-tuning, on two pre-trained multilingual models (mBERT and mT5) and multiple classification and question answering tasks. We find that other high-resource languages such as German and Russian often transfer more effectively, especially when the set of target languages is diverse or unknown a priori. Unexpectedly, this can be true even when the training sets were automatically translated from English. This finding can have immediate impact on multilingual zero-shot systems, and should inform future benchmark designs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا