Do you want to publish a course? Click here

Improvements in cosmological constraints from breaking growth degeneracy

111   0   0.0 ( 0 )
 Added by Louis Perenon
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The key probes of the growth of large-scale structure are its rate $f$ and amplitude $sigma_8$. Redshift space distortions in the galaxy power spectrum allow us to measure only the combination $fsigma_8$, which can be used to constrain the standard cosmological model or alternatives. By using measurements of the galaxy-galaxy lensing cross-correlation spectrum or of the galaxy bispectrum, it is possible to break the $fsigma_8$ degeneracy and obtain separate estimates of $f$ and $sigma_8$ from the same galaxy sample. Currently there are only a handful of such separate measurements, but even this allows for improved constraints on cosmological models. We explore how having a larger and more precise sample of such measurements in the future could constrain further cosmological models. We consider what can be achieved by a future nominal sample that delivers a $sim 1%$ constraint on $f$ and $sigma_8$ separately, compared to the case with a similar precision on the combination $fsigma_8$. For the six cosmological parameters of $Lambda$CDM, we find improvements of $sim! 5$--$50%$ on their constraints. For modified gravity models in the Horndeski class, the improvements on these standard parameters are $sim! 0$--$15%$. However, the precision on the sum of neutrino masses improves by 65% and there is a significant increase in the precision on the background and perturbation Horndeski parameters.



rate research

Read More

Reconstructing the expansion history of the Universe from type Ia supernovae data, we fit the growth rate measurements and put model-independent constraints on some key cosmological parameters, namely, $Omega_mathrm{m},gamma$, and $sigma_8$. The constraints are consistent with those from the concordance model within the framework of general relativity, but the current quality of the data is not sufficient to rule out modified gravity models. Adding the condition that dark energy density should be positive at all redshifts, independently of its equation of state, further constrains the parameters and interestingly supports the concordance model.
Accurate cosmological parameter estimates using polarization data of the cosmic microwave background (CMB) put stringent requirements on map calibration, as highlighted in the recent results from the Planck satellite. In this paper, we point out that a model-dependent determination of polarization calibration can be achieved by the joint fit of the TE and EE CMB power spectra. This provides a valuable cross-check to band-averaged polarization efficiency measurements determined using other approaches. We demonstrate that, in $Lambda$CDM, the combination of the TE and EE constrain polarization calibration with sub-percent uncertainty with Planck data and 2% uncertainty with SPTpol data. We arrive at similar conclusions when extending $Lambda$CDM to include the amplitude of lensing $A_{rm L}$, the number of relativistic species $N_{rm eff}$, or the sum of the neutrino masses $sum m_{ u}$. The uncertainties on cosmological parameters are minimally impacted when marginalizing over polarization calibration, except, as can be expected, for the uncertainty on the amplitude of the primordial scalar power spectrum $ln(10^{10} A_{rm s})$, which increases by $20-50$%. However, this information can be fully recovered by adding TT data. For current and future ground-based experiments, SPT-3G and CMB-S4, we forecast the cosmological parameter uncertainties to be minimally degraded when marginalizing over polarization calibration parameters. In addition, CMB-S4 could constrain its polarization calibration at the level of $sim$0.2% by combining TE and EE, and reach $sim$0.06% by also including TT. We therefore conclude that relying on calibrating against Planck polarization maps, whose statistical uncertainty is limited to $sim$0.5%, would be insufficient for upcoming experiments.
105 - A. Del Popolo 2010
We show how to improve constraints on Omega_m, sigma_8, and the dark-energy equation-of-state parameter, w, obtained by Mantz et al. (2008) from measurements of the X-ray luminosity function of galaxy clusters, namely MACS, the local BCS and the REFLEX galaxy cluster samples with luminosities L> 3 times 10^{44} erg/s in the 0.1--2.4 keV band. To this aim, we use Tinker et al. (2008) mass function instead of Jenkins et al. (2001) and the M-L relationship obtained from Del Popolo (2002) and Del Popolo et al. (2005). Using the same methods and priors of Mantz et al. (2008), we find, for a Lambda$CDM universe, Omega_m=0.28^{+0.05}_{-0.04} and sigma_8=0.78^{+0.04}_{-0.05}$ while the result of Mantz et al. (2008) gives less tight constraints $Omega_m=0.28^{+0.11}_{-0.07}$ and sigma_8=0.78^{+0.11}_{-0.13}. In the case of a wCDM model, we find Omega_m=0.27^{+0.07}_{-0.06}, $sigma_8=0.81^{+0.05}_{-0.06}$ and $w=-1.3^{+0.3}_{-0.4}$, while in Mantz et al. (2008) they are again less tight Omega_m=0.24^{+0.15}_{-0.07}, sigma_8=0.85^{+0.13}_{-0.20} and w=-1.4^{+0.4}_{-0.7}. Combining the XLF analysis with the f_{gas}+CMB+SNIa data set results in the constraint Omega_m=0.269 pm 0.012, sigma_8=0.81 pm 0.021 and w=-1.02 pm 0.04, to be compared with Mantz et al. (2008), Omega_m=0.269 pm 0.016, sigma_8=0.82 pm 0.03 and w=-1.02 pm 0.06. The tightness of the last constraints obtained by Mantz et al. (2008), are fundamentally due to the tightness of the $f_{gas}$+CMB+SNIa constraints and not to their XLF analysis. Our findings, consistent with w=-1, lend additional support to the cosmological-constant model.
225 - Z. Zhou , T. J. Zhang , T. P. Li 2019
We study cosmological models with interaction between dark energy (DE) and dark matter (DM). For the interaction term $Q$ in cosmic evolution equations, there is a model-independent degeneracy-breaking (D-B) point when $Q_{1}$ (a part of $Q$) equals to zero, where the interaction can be probed without degeneracy between the constant DE equation of state (EoS).
We examine bounds on adiabatic and isocurvature density fluctuations from $mu$-type spectral distortions of the cosmic microwave background (CMB). Studies of such distortion are complementary to CMB measurements of the spectral index and its running, and will help to constrain these parameters on significantly smaller scales. We show that a detection on the order of $mu sim 10^{-7}$ would strongly be at odds with the standard cosmological model of a nearly scale-invariant spectrum of adiabatic perturbations. Further, we find that given the current CMB constraints on the isocurvature mode amplitude, a nearly scale-invariant isocurvature mode (common in many curvaton models) cannot produce significant $mu$-distortion. Finally, we show that future experiments will strongly constrain the amplitude of the isocurvature modes with a highly blue spectrum as predicted by certain axion models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا