Do you want to publish a course? Click here

Inverse scattering transform and soliton solutions for the modified matrix Korteweg-de Vries equation with nonzero boundary conditions

113   0   0.0 ( 0 )
 Added by Shou-Fu Tian
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The theory of inverse scattering is developed to study the initial-value problem for the modified matrix Korteweg-de Vries (mmKdV) equation with the $2mtimes2m$ $(mgeq 1)$ Lax pairs under the nonzero boundary conditions at infinity. In the direct problem, by introducing a suitable uniform transformation we establish the proper complex $z$-plane in order to discuss the Jost eigenfunctions, scattering matrix and their analyticity and symmetry of the equation. Moreover the asymptotic behavior of the Jost functions and scattering matrix needed in the inverse problem are analyzed via Wentzel-Kramers-Brillouin expansion. In the inverse problem, the generalized Riemann-Hilbert problem of the mmKdV equation is first established by using the analyticity of the modified eigenfunctions and scattering coefficients. The reconstruction formula of potential function with reflection-less case is derived by solving this Riemann-Hilbert problem and using the scattering data. In addition the dynamic behavior of the solutions for the focusing mmKdV equation including one- and two- soliton solutions are presented in detail under the the condition that the potential is scalar and the $2times2$ symmetric matrix. Finally, we provide some detailed proofs and weak version of trace formulas to show that the asymptotic phase of the potential and the scattering data.



rate research

Read More

In this work, we extend the Riemann-Hilbert (RH) method in order to study the coupled modified Korteweg-de Vries equation (cmKdV) under nonzero boundary conditions (NZBCs), and successfully find its solutions with their various dynamic propagation behaviors. In the process of spectral analysis, it is necessary to introduce Riemann surface to avoid the discussion of multi-valued functions, and to obtain the analytical and asymptotic properties needed to establish the RH problem. The eigenfunction have a column that is not analytic in a given region, so we introduce the auxiliary eigenfunction and the adjoint matrix, which is necessary to derive the analytical eigenfunctions. The eigenfunctions have three kinds of symmetry, which leads to three kinds of symmetry of the scattering matrix, and the discrete spectrum is also divided into three categories by us. The asymptoticity of the modified eigenfunction is derived. Based on the analysis, the RH problem with four jump matrices in a given area is established, and the relationship between the cmKdV equation and the solution of the RH problem is revealed. The residue condition of reflection coefficient with simple pole is established. According to the classification of discrete spectrum, we discuss the soliton solutions corresponding to three kinds of discrete spectrum classification and their propagation behaviors in detail.
We extend the Riemann-Hilbert (RH) method to study the inverse scattering transformation and high-order pole solutions of the focusing and defocusing nonlocal (reverse-space-time) modified Korteweg-de Vries (mKdV) equations with nonzero boundary conditions (NZBCs) at infinity and successfully find its multiple soliton solutions with one high-order pole and multiple high-order poles. By introducing the generalized residue formula, we overcome the difficulty caused by calculating the residue conditions corresponding to the higher-order poles. In accordance with the Laurent series of reflection coefficient and oscillation term, the determinant formula of the high-order pole solution with NZBCs is established. Finally, combined with specific parameters, the dynamic propagation behaviors of the high-order pole solutions are further analyzed and some very interesting phenomena are obtained, including kink solution, anti kink solution, rational solution and breathing-soliton solution.
The $n$-fold Darboux transformation $T_{n}$ of the focusing real mo-di-fied Kor-te-weg-de Vries (mKdV) equation is expressed in terms of the determinant representation. Using this representation, the $n$-soliton solutions of the mKdV equation are also expressed by determinants whose elements consist of the eigenvalues $lambda_{j}$ and the corresponding eigenfunctions of the associated Lax equation. The nonsingular $n$-positon solutions of the focusing mKdV equation are obtained in the special limit $lambda_{j}rightarrowlambda_{1}$, from the corresponding $n$-soliton solutions and by using the associated higher-order Taylor expansion. Furthermore, the decomposition method of the $n$-positon solution into $n$ single-soliton solutions, the trajectories, and the corresponding phase shifts of the multi-positons are also investigated.
In this paper, we consider the real modified Korteweg-de Vries (mKdV) equation and construct a special kind of breather solution, which can be obtained by taking the limit $lambda_{j}$ $rightarrow$ $lambda_{1}$ of the Lax pair eigenvalues used in the $n$-fold Darboux transformation that generates the order-$n$ periodic solution from a constant seed solution. Further, this special kind of breather solution of order $n$ can be used to generate the order-$n$ rational solution by taking the limit $lambda_{1}$ $rightarrow$ $lambda_{0}$, where $lambda_{0}$ is a special eigenvalue associated to the eigenfunction $phi$ of the Lax pair of the mKdV equation. This eigenvalue $lambda_0$, for which $phi(lambda_0)=0$, corresponds to the limit of infinite period of the periodic solution. %This second limit of double eigenvalue degeneration might be realized approximately in optical fibers, in which an injected %initial ideal pulse is created by a comb system and a programmable optical filter according to the profile of the analytical %form of the b-positon at a certain spatial position $x_{0}$. Therefore, we suggest a new way to observe the higher-order %rational solutions in optical fibers, namely, to measure the wave patterns at the central region of the higher order b-positon %generated by ideal initial pulses when the eigenvalue $lambda_{1}$ is approaching $lambda_{0}$. Our analytical and numerical results show the effective mechanism of generation of higher-order rational solutions of the mKdV equation from the double eigenvalue degeneration process of multi-periodic solutions.
We apply the method of nonlinear steepest descent to compute the long-time asymptotics of the Korteweg-de Vries equation with steplike initial data leading to a rarefaction wave. In addition to the leading asymptotic we also compute the next term in the asymptotic expansion of the rarefaction wave, which was not known before.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا