No Arabic abstract
We report the discovery of NGTS-11 b (=TOI-1847 b), a transiting Saturn in a 35.46-day orbit around a mid K-type star (Teff=5050 K). We initially identified the system from a single-transit event in a TESS full-frame image light-curve. Following seventy-nine nights of photometric monitoring with an NGTS telescope, we observed a second full transit of NGTS-11 b approximately one year after the TESS single-transit event. The NGTS transit confirmed the parameters of the transit signal and restricted the orbital period to a set of 13 discrete periods. We combined our transit detections with precise radial velocity measurements to determine the true orbital period and measure the mass of the planet. We find NGTS-11 b has a radius of 0.817+0.028-0.032 $R_J$, a mass of 0.344+0.092-0.073 $M_J$, and an equilibrium temperature of just 435+34-32 K, making it one of the coolest known transiting gas giants. NGTS-11 b is the first exoplanet to be discovered after being initially identified as a TESS single-transit event, and its discovery highlights the power of intense photometric monitoring in recovering longer-period transiting exoplanets from single-transit events.
We report the discovery and confirmation of two new hot Jupiters discovered by the Transiting Exoplanet Survey Satellite (TESS): TOI 564 b and TOI 905 b. The transits of these two planets were initially observed by TESS with orbital periods of 1.651 d and 3.739 d, respectively. We conducted follow-up observations of each system from the ground, including photometry in multiple filters, speckle interferometry, and radial velocity measurements. For TOI 564 b, our global fitting revealed a classical hot Jupiter with a mass of $1.463^{+0.10}_{-0.096} M_J$ and a radius of $1.02^{+0.71}_{-0.29} R_J$. TOI 905 b is a classical hot Jupiter as well, with a mass of $0.667^{+0.042}_{-0.041} M_J$ and radius of $1.171^{+0.053}_{-0.051} R_J$. Both planets orbit Sun-like, moderately bright, mid-G dwarf stars with V ~ 11. While TOI 905 b fully transits its star, we found that TOI 564 b has a very high transit impact parameter of $0.994^{+0.083}_{-0.049}$, making it one of only ~20 known systems to exhibit a grazing transit and one of the brightest host stars among them. TOI 564 b is therefore one of the most attractive systems to search for additional non-transiting, smaller planets by exploiting the sensitivity of grazing transits to small changes in inclination and transit duration over the time scale of several years.
We confirm the planetary nature of a warm Jupiter transiting the early M dwarf TOI-1899, using a combination of available TESS photometry; high-precision, near-infrared spectroscopy with the Habitable-zone Planet Finder; and speckle and adaptive optics imaging. The data reveal a transiting companion on an $sim29$-day orbit with a mass and radius of $0.66pm0.07 mathrm{M_{J}}$ and $1.15_{-0.05}^{+0.04} mathrm{R_{J}}$, respectively. The star TOI-1899 is the lowest-mass star known to host a transiting warm Jupiter, and we discuss the follow-up opportunities afforded by a warm ($mathrm{T_{eq}}sim362$ K) gas giant orbiting an M0 star. Our observations reveal that TOI-1899.01 is a puffy warm Jupiter, and we suggest additional transit observations to both refine the orbit and constrain the true dilution observed in TESS.
In this paper we report the discovery of TOI-220 $b$, a new sub-Neptune detected by the Transiting Exoplanet Survey Satellite (TESS) and confirmed by radial velocity follow-up observations with the HARPS spectrograph. Based on the combined analysis of TESS transit photometry and high precision radial velocity measurements we estimate a planetary mass of 13.8 $pm$ 1.0 M$_{Earth}$ and radius of 3.03 $pm$ 0.15 R$_{Earth}$, implying a bulk density of 2.73 $pm$ 0.47 $textrm{g cm}^{-3}$. TOI-220 $b$ orbits a relative bright (V=10.4) and old (10.1$pm$1.4 Gyr) K dwarf star with a period of $sim$10.69 d. Thus, TOI-220 $b$ is a new warm sub-Neptune with very precise mass and radius determinations. A Bayesian analysis of the TOI-220 $b$ internal structure indicates that due to the strong irradiation it receives, the low density of this planet could be explained with a steam atmosphere in radiative-convective equilibrium and a supercritical water layer on top of a differentiated interior made of a silicate mantle and a small iron core.
We report the period, eccentricity, and mass determination for the TESS single-transit event candidate TOI-222, which displayed a single 3000 ppm transit in the TESS two-minute cadence data from Sector 2. We determine the orbital period via radial velocity measurements (P=33.9,days), which allowed for ground-based photometric detection of two subsequent transits. Our data show that the companion to TOI-222 is a low mass star, with a radius of $0.18_{-0.10}^{+0.39}$ Rsun and a mass of $0.23pm0.01$ Msun. This discovery showcases the ability to efficiently discover long-period systems from TESS single transit events using a combination of radial velocity monitoring coupled with high precision ground-based photometry.
We present the discovery of two new 10-day period giant planets from the Transiting Exoplanet Survey Satellite ($TESS$) mission, whose masses were precisely determined using a wide diversity of ground-based facilities. TOI-481 b and TOI-892 b have similar radii ($0.99pm0.01$ $rm R_{J}$ and $1.07pm0.02$ $rm R_{J}$, respectively), and orbital periods (10.3311 days and 10.6266 days, respectively), but significantly different masses ($1.53pm0.03$ $rm M_{J}$ versus $0.95pm0.07$ $rm M_{J}$, respectively). Both planets orbit metal-rich stars ([Fe/H]= $+0.26pm 0.05$ dex and [Fe/H] = $+0.24 pm 0.05$ dex, for TOI-481 and TOI-892, respectively) but at different evolutionary stages. TOI-481 is a $rm M_{star}$ = $1.14pm0.02$ $rm M_{odot}$, $rm R_{star}$ = $1.66pm0.02$ $rm R_{odot}$ G-type star ($T_{rm eff}$ = $5735 pm 72$ K), that with an age of 6.7 Gyr, is in the turn-off point of the main sequence. TOI-892, on the other hand, is a F-type dwarf star ($T_{rm eff}$ = $6261 pm 80$ K), which has a mass of $rm M_{star}$ = $1.28pm0.03$ $rm M_{odot}$, and a radius of $rm R_{star}$ = $1.39pm0.02$ $rm R_{odot}$. TOI-481 b and TOI-892 b join the scarcely populated region of transiting gas giants with orbital periods longer than 10 days, which is important to constrain theories of the formation and structure of hot Jupiters.