Do you want to publish a course? Click here

Template Guided Text Generation for Task-Oriented Dialogue

390   0   0.0 ( 0 )
 Added by Mihir Kale
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Virtual assistants such as Google Assistant, Amazon Alexa, and Apple Siri enable users to interact with a large number of services and APIs on the web using natural language. In this work, we investigate two methods for Natural Language Generation (NLG) using a single domain-independent model across a large number of APIs. First, we propose a schema-guided approach which conditions the generation on a schema describing the API in natural language. Our second method investigates the use of a small number of templates, growing linearly in number of slots, to convey the semantics of the API. To generate utterances for an arbitrary slot combination, a few simple templates are first concatenated to give a semantically correct, but possibly incoherent and ungrammatical utterance. A pre-trained language model is subsequently employed to rewrite it into coherent, natural sounding text. Through automatic metrics and human evaluation, we show that our method improves over strong baselines, is robust to out-of-domain inputs and shows improved sample efficiency.



rate research

Read More

Existing methods for Dialogue Response Generation (DRG) in Task-oriented Dialogue Systems (TDSs) can be grouped into two categories: template-based and corpus-based. The former prepare a collection of response templates in advance and fill the slots with system actions to produce system responses at runtime. The latter generate system responses token by token by taking system actions into account. While template-based DRG provides high precision and highly predictable responses, they usually lack in terms of generating diverse and natural responses when compared to (neural) corpus-based approaches. Conversely, while corpus-based DRG methods are able to generate natural responses, we cannot guarantee their precision or predictability. Moreover, the diversity of responses produced by todays corpus-based DRG methods is still limited. We propose to combine the merits of template-based and corpus-based DRGs by introducing a prototype-based, paraphrasing neural network, called P2-Net, which aims to enhance quality of the responses in terms of both precision and diversity. Instead of generating a response from scratch, P2-Net generates system responses by paraphrasing template-based responses. To guarantee the precision of responses, P2-Net learns to separate a response into its semantics, context influence, and paraphrasing noise, and to keep the semantics unchanged during paraphrasing. To introduce diversity, P2-Net randomly samples previous conversational utterances as prototypes, from which the model can then extract speaking style information. We conduct extensive experiments on the MultiWOZ dataset with both automatic and human evaluations. The results show that P2-Net achieves a significant improvement in diversity while preserving the semantics of responses.
Scarcity of training data for task-oriented dialogue systems is a well known problem that is usually tackled with costly and time-consuming manual data annotation. An alternative solution is to rely on automatic text generation which, although less accurate than human supervision, has the advantage of being cheap and fast. In this paper we propose a novel controlled data generation method that could be used as a training augmentation framework for closed-domain dialogue. Our contribution is twofold. First we show how to optimally train and control the generation of intent-specific sentences using a conditional variational autoencoder. Then we introduce a novel protocol called query transfer that allows to leverage a broad, unlabelled dataset to extract relevant information. Comparison with two different baselines shows that our method, in the appropriate regime, consistently improves the diversity of the generated queries without compromising their quality.
In this paper, we propose to formulate the task-oriented dialogue system as the purely natural language generation task, so as to fully leverage the large-scale pre-trained models like GPT-2 and simplify complicated delexicalization prepossessing. However, directly applying this method heavily suffers from the dialogue entity inconsistency caused by the removal of delexicalized tokens, as well as the catastrophic forgetting problem of the pre-trained model during fine-tuning, leading to unsatisfactory performance. To alleviate these problems, we design a novel GPT-Adapter-CopyNet network, which incorporates the lightweight adapter and CopyNet modules into GPT-2 to achieve better performance on transfer learning and dialogue entity generation. Experimental results conducted on the DSTC8 Track 1 benchmark and MultiWOZ dataset demonstrate that our proposed approach significantly outperforms baseline models with a remarkable performance on automatic and human evaluations.
Dialogue management (DM) decides the next action of a dialogue system according to the current dialogue state, and thus plays a central role in task-oriented dialogue systems. Since dialogue management requires to have access to not only local utterances, but also the global semantics of the entire dialogue session, modeling the long-range history information is a critical issue. To this end, we propose a novel Memory-Augmented Dialogue management model (MAD) which employs a memory controller and two additional memory structures, i.e., a slot-value memory and an external memory. The slot-value memory tracks the dialogue state by memorizing and updating the values of semantic slots (for instance, cuisine, price, and location), and the external memory augments the representation of hidden states of traditional recurrent neural networks through storing more context information. To update the dialogue state efficiently, we also propose slot-level attention on user utterances to extract specific semantic information for each slot. Experiments show that our model can obtain state-of-the-art performance and outperforms existing baselines.
Automated metrics such as BLEU are widely used in the machine translation literature. They have also been used recently in the dialogue community for evaluating dialogue response generation. However, previous work in dialogue response generation has shown that these metrics do not correlate strongly with human judgment in the non task-oriented dialogue setting. Task-oriented dialogue responses are expressed on narrower domains and exhibit lower diversity. It is thus reasonable to think that these automated metrics would correlate well with human judgment in the task-oriented setting where the generation task consists of translating dialogue acts into a sentence. We conduct an empirical study to confirm whether this is the case. Our findings indicate that these automated metrics have stronger correlation with human judgments in the task-oriented setting compared to what has been observed in the non task-oriented setting. We also observe that these metrics correlate even better for datasets which provide multiple ground truth reference sentences. In addition, we show that some of the currently available corpora for task-oriented language generation can be solved with simple models and advocate for more challenging datasets.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا