Dissipative Floquet Majorana modes in proximity-induced topological superconductors


Abstract in English

We study a realistic Floquet topological superconductor, a periodically driven nanowire proximitized to an equilibrium s-wave superconductor. Due to both strong energy and density fluctuations caused from the superconducting proximity effect, the Floquet Majorana wire becomes dissipative. We show that the Floquet band structure is still preserved in this dissipative system. In particular, we find that both the Floquet Majorana zero and pi modes can no longer be simply described by the Floquet topological band theory. We also propose an effective model to simplify the calculation of the lifetime of these Floquet Majoranas, and find that the lifetime can be engineered by the external driving field.

Download