No Arabic abstract
Dark matter coupled solely gravitationally can be produced through the decay of primordial black holes in the early universe. If the dark matter is lighter than the initial black hole temperature, it could be warm enough to be subject to structure formation constraints. In this paper we perform a more precise determination of these constraints. We first evaluate the dark matter phase-space distribution, without relying on the instantaneous decay approximation. We then interface this phase-space distribution with the Boltzmann code CLASS to extract the corresponding matter power spectrum, which we find to match closely those of warm dark matter models, albeit with a different dark matter mass. This mapping allows us to extract constraints from Lyman-$alpha$ data without the need to perform hydrodynamical simulations. We robustly rule out the possibility, consistent with previous analytic estimates, of primordial black holes having come to dominate the energy density of the universe and simultaneously given rise to all the DM through their decay. Consequences and implications for dark radiation and leptogenesis are also briefly discussed.
We investigate a possibility of primordial black hole (PBH) formation with a hierarchical mass spectrum in multiple phases of inflation. As an example, we find that one can simultaneously realize a mass spectrum which has recently attracted a lot of attention: stellar-mass PBHs ($simmathcal{O}(10)M_odot$) as a possible source of binary black holes detected by LIGO/Virgo collaboration, asteroid-mass ($simmathcal{O}(10^{-12})M_odot$) as a main component of dark matter, and earth-mass ($simmathcal{O}(10^{-5})M_odot$) as a source of ultrashort-timescale events in Optical Gravitational Lensing Experiment microlensing data. The recent refined de Sitter swampland conjecture may support such a multi-phase inflationary scenario with hierarchical mass PBHs as a transition signal of each inflationary phase.
Primordial Black Holes (PBHs) are candidates for dark matter as well as ultra-high energy cosmic rays. PBHs are speculated to exist over a large range of masses, from below $10^{15}$ g to $10^3$ M$_odot$. Here we search for PBHs with an initial mass of $sim 10^{15}$ g. Hawking radiation by black holes of this initial mass predicts their evaporation at present time. PBHs are expected to produce copious amounts of high-energy neutrinos and gamma rays right before evaporating. Gamma-ray instruments such as Fermi, VERITAS, HAWC, HESS, and Milagro have conducted searches for evaporating PBHs during their last second to a year of existence. They are able to detect bursts from PBHs in a range of $10^{-3}$ to $0.1$ pc. We present sensitivity to PBH evaporation using one year of neutrino data by IceCube. In these proceedings, we detail the changes to adapt IceCubes standard neutrino flare search, aka time-dependent point source search, into one that is appropriate for evaporating BHs. These proceedings serve as proof of concept for a first-ever search for evaporating PBHs using neutrinos that can use 10 years of IceCube data.
Primordial black holes (PBHs) have long been suggested as a candidate for making up some or all of the dark matter in the Universe. Most of the theoretically possible mass range for PBH dark matter has been ruled out with various null observations of expected signatures of their interaction with standard astrophysical objects. However, current constraints are significantly less robust in the 20 M_sun < M_PBH < 100 M_sun mass window, which has received much attention recently, following the detection of merging black holes with estimated masses of ~30 M_sun by LIGO and the suggestion that these could be black holes formed in the early Universe. We consider the potential of advanced LIGO (aLIGO) operating at design sensitivity to probe this mass range by looking for peaks in the mass spectrum of detected events. To quantify the background, which is due to black holes that are formed from dying stars, we model the shape of the stellar-black-hole mass function and calibrate its amplitude to match the O1 results. Adopting very conservative assumptions about the PBH and stellar-black-hole merger rates, we show that ~5 years of aLIGO data can be used to detect a contribution of >20 M_sun PBHs to dark matter down to f_PBH<0.5 at >99.9% confidence level. Combined with other probes that already suggest tension with f_PBH=1, the obtainable independent limits from aLIGO will thus enable a firm test of the scenario that PBHs make up all of dark matter.
Seven observations point towards the existence of primordial black holes (PBH), constituting the whole or an important fraction of the dark matter in the Universe: the mass and spin of black holes detected by Advanced LIGO/VIRGO, the detection of micro-lensing events of distant quasars and stars in M31, the non-detection of ultra-faint dwarf satellite galaxies with radius below 15 parsecs, evidences for core galactic dark matter profiles, the correlation between X-ray and infrared cosmic backgrounds, and the existence of super-massive black holes very early in the Universes history. Some of these hints are newly identified and they are all intriguingly compatible with the re-constructed broad PBH mass distribution from LIGO events, peaking on PBH mass $m_{rm PBH} approx 3 M_odot$ and passing all other constraints on PBH abundances. PBH dark matter also provides a new mechanism to explain the mass-to-light ratios of dwarf galaxies, including the recent detection of a diffuse galaxy not dominated by dark matter. Finally we conjecture that between 0.1% and 1% of the events detected by LIGO will involve a PBH with a mass below the Chandrasekhar mass, which would unambiguously prove the existence of PBH.
We revisit cosmic microwave background (CMB) constraints on primordial black hole dark matter. Spectral distortion limits from COBE/FIRAS do not impose a relevant constraint. Planck CMB anisotropy power spectra imply that primordial black holes with $m_{BH}gtrsim 5~M_{odot}$ are disfavored. However, this is susceptible to sizeable uncertainties due to the treatment of the black hole accretion process. These constraints are weaker than those quoted in earlier literature for the same observables.