No Arabic abstract
In the multidimensional stable roommate problem, agents have to be allocated to rooms and have preferences over sets of potential roommates. We study the complexity of finding good allocations of agents to rooms under the assumption that agents have diversity preferences [Bredereck et al., 2019]: each agent belongs to one of the two types (e.g., juniors and seniors, artists and engineers), and agents preferences over rooms depend solely on the fraction of agents of their own type among their potential roommates. We consider various solution concepts for this setting, such as core and exchange stability, Pareto optimality and envy-freeness. On the negative side, we prove that envy-free, core stable or (strongly) exchange stable outcomes may fail to exist and that the associated decision problems are NP-complete. On the positive side, we show that these problems are in FPT with respect to the room size, which is not the case for the general stable roommate problem. Moreover, for the classic setting with rooms of size two, we present a linear-time algorithm that computes an outcome that is core and exchange stable as well as Pareto optimal. Many of our results for the stable roommate problem extend to the stable marriage problem.
We study the three-dimensional stable matching problem with cyclic preferences. This model involves three types of agents, with an equal number of agents of each type. The types form a cyclic order such that each agent has a complete preference list over the agents of the next type. We consider the open problem of the existence of three-dimensional matchings in which no triple of agents prefer each other to their partners. Such matchings are said to be weakly stable. We show that contrary to published conjectures, weakly stable three-dimensional matchings need not exist. Furthermore, we show that it is NP-complete to determine whether a weakly stable three-dimensional matchings exists. We achieve this by reducing from the variant of the problem where preference lists are allowed to be incomplete. Our results can be generalized to the $k$-dimensional stable matching problem with cyclic preferences for $k geq 3$.
We describe our experience with designing and running a matching market for the Israeli Mechinot gap-year programs. The main conceptual challenge in the design of this market was the rich set of diversity considerations, which necessitated the development of an appropriate preference-specification language along with corresponding choice-function semantics, which we also theoretically analyze. Our contribution extends the existing toolbox for two-sided matching with soft constraints. This market was run for the first time in January 2018 and matched 1,607 candidates (out of a total of 3,120 candidates) to 35 different programs, has been run twice more since, and has been adopted by the Joint Council of the Mechinot gap-year programs for the foreseeable future.
The Possible-Winner problem asks, given an election where the voters preferences over the set of candidates is partially specified, whether a distinguished candidate can become a winner. In this work, we consider the computational complexity of Possible-Winner under the assumption that the voter preferences are $partitioned$. That is, we assume that every voter provides a complete order over sets of incomparable candidates (e.g., candidates are ranked by their level of education). We consider elections with partitioned profiles over positional scoring rules, with an unbounded number of candidates, and unweighted voters. Our first result is a polynomial time algorithm for voting rules with $2$ distinct values, which include the well-known $k$-approval voting rule. We then go on to prove NP-hardness for a class of rules that contain all voting rules that produce scoring vectors with at least $4$ distinct values.
We consider the problem of committee selection from a fixed set of candidates where each candidate has multiple quantifiable attributes. To select the best possible committee, instead of voting for a candidate, a voter is allowed to approve the preferred attributes of a given candidate. Though attribute based preference is addressed in several contexts, committee selection problem with attribute approval of voters has not been attempted earlier. A committee formed on attribute preferences is more likely to be a better representative of the qualities desired by the voters and is less likely to be susceptible to collusion or manipulation. In this work, we provide a formal study of the different aspects of this problem and define properties of weak unanimity, strong unanimity, simple justified representations and compound justified representation, that are required to be satisfied by the selected committee. We show that none of the existing vote/approval aggregation rules satisfy these new properties for attribute aggregation. We describe a greedy approach for attribute aggregation that satisfies the first three properties, but not the fourth, i.e., compound justified representation, which we prove to be NP-complete. Furthermore, we prove that finding a committee with justified representation and the highest approval voting score is NP-complete.
The problem of allocating scarce items to individuals is an important practical question in market design. An increasingly popular set of mechanisms for this task uses the concept of market equilibrium: individuals report their preferences, have a budget of real or fake currency, and a set of prices for items and allocations is computed that sets demand equal to supply. An important real world issue with such mechanisms is that individual valuations are often only imperfectly known. In this paper, we show how concepts from classical market equilibrium can be extended to reflect such uncertainty. We show that in linear, divisible Fisher markets a robust market equilibrium (RME) always exists; this also holds in settings where buyers may retain unspent money. We provide theoretical analysis of the allocative properties of RME in terms of envy and regret. Though RME are hard to compute for general uncertainty sets, we consider some natural and tractable uncertainty sets which lead to well behaved formulations of the problem that can be solved via modern convex programming methods. Finally, we show that very mild uncertainty about valuations can cause RME allocations to outperform those which take estimates as having no underlying uncertainty.