Do you want to publish a course? Click here

Large deviation principle for moment map estimation

83   0   0.0 ( 0 )
 Added by P\\'eter Vrana
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider a family of positive operator valued measures associated with representations of compact connected Lie groups. For many independent copies of a single state and a tensor power representation we show that the observed probability distributions converge to the value of the moment map. For invertible states we prove that the measures satisfy the large deviation principle with an explicitly given rate function.



rate research

Read More

We consider the many-body quantum evolution of a factorized initial data, in the mean-field regime. We show that fluctuations around the limiting Hartree dynamics satisfy large deviation estimates, that are consistent with central limit theorems that have been established in the last years.
We prove that the energy of any eigenvector of a sum of several independent large Wigner matrices is equally distributed among these matrices with very high precision. This shows a particularly strong microcanonical form of the equipartition principle for quantum systems whose components are modelled by Wigner matrices.
We initiate a study of large deviations for block model random graphs in the dense regime. Following Chatterjee-Varadhan(2011), we establish an LDP for dense block models, viewed as random graphons. As an application of our result, we study upper tail large deviations for homomorphism densities of regular graphs. We identify the existence of a symmetric phase, where the graph, conditioned on the rare event, looks like a block model with the same block sizes as the generating graphon. In specific examples, we also identify the existence of a symmetry breaking regime, where the conditional structure is not a block model with compatible dimensions. This identifies a reentrant phase transition phenomenon for this problem---analogous to one established for Erdos-Renyi random graphs (Chatterjee-Dey(2010), Chatterjee-Varadhan(2011)). Finally, extending the analysis of Lubetzky-Zhao(2015), we identify the precise boundary between the symmetry and symmetry breaking regime for homomorphism densities of regular graphs and the operator norm on Erdos-Renyi bipartite graphs.
We present a variational approach which shows that the wave functions belonging to quantum systems in different potential landscapes, are pairwise linked to each other through a generalized continuity equation. This equation contains a source term proportional to the potential difference. In case the potential landscapes are related by a linear symmetry transformation in a finite domain of the embedding space, the derived continuity equation leads to generalized currents which are divergence free within this spatial domain. In a single spatial dimension these generalized currents are invariant. In contrast to the standard continuity equation, originating from the abelian $U(1)$-phase symmetry of the standard Lagrangian, the generalized continuity equations derived here, are based on a non-abelian $SU(2)$-transformation of a Super-Lagrangian. Our approach not only provides a rigorous theoretical framework to study quantum mechanical systems in potential landscapes possessing local symmetries, but it also reveals a general duality between quantum states corresponding to different Schr{o}dinger problems.
76 - Wei Hong , Shihu Li , Wei Liu 2021
This paper is devoted to investigating the Freidlin-Wentzells large deviation principle for a class of McKean-Vlasov quasilinear SPDEs perturbed by small multiplicative noise. We adopt the variational framework and the modified weak convergence criteria to prove the Laplace principle for McKean-Vlasov type SPDEs, which is equivalent to the large deviation principle. Moreover, we do not assume any compactness condition of embedding in the Gelfand triple to handle both the cases of bounded and unbounded domains in applications. The main results can be applied to various McKean-Vlasov type SPDEs such as distribution dependent stochastic porous media type equations and stochastic p-Laplace type equations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا