We theoretically investigate the optical activity of three dimensional Dirac semimetals (DSMs) using circular dichroism (CD). We show that DSMs in the presence of a magnetic field in any one of the mirror-symmetric planes of the materials exhibit a notable dichroic behavior. In particular, for different orientations of the light field with respect to the mirror-symmetric plane, the CD in type-II DSMs can detect the presence of mirror anomaly by showing sharply distinct patterns at the mirror-symmetric angle. Interestingly, CD can also distinguish type-II DSMs having only one Dirac point at a time-reversal invariant momentum from type-I DSMs with a pair of Dirac points on the rotation axis of the crystals.