In this study, we investigate noble metal free photocatalytic water splitting on natural anatase single crystal facets and on wafer slices of the [001] plane before and after these surfaces have been modified by high pressure hydrogenation (HPH) and hydrogen ion-implantation. We find that on the natural, intact low index planes photocatalytic H$_2$ evolution (in absence of noble metal co-catalyst) can only be achieved when the hydrogenation treatment is accompanied by the introduction of crystal damage, such as simple scratching, miscut in the wafer or by implantation damage. X-ray reflectivity (XRR), Raman, and optical reflection measurements show that plain hydrogenation leads to a ~ 1 nm thick black titania surface layer without activity, while a colorless, density modified and ~ 7 nm thick layer with broken crystal symmetry is present in the ion implanted surface. These results demonstrate that i) the H-treatment of an intact anatase surface needs to be combined with defect formation for catalytic activation, and ii) activation does not necessarily coincide with the presence of black color.