Do you want to publish a course? Click here

Noble metal free photocatalytic H$_2$ generation on black TiO$_2$: On the influence of crystal facets vs. crystal damage

101   0   0.0 ( 0 )
 Added by Patrik Schmuki
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this study, we investigate noble metal free photocatalytic water splitting on natural anatase single crystal facets and on wafer slices of the [001] plane before and after these surfaces have been modified by high pressure hydrogenation (HPH) and hydrogen ion-implantation. We find that on the natural, intact low index planes photocatalytic H$_2$ evolution (in absence of noble metal co-catalyst) can only be achieved when the hydrogenation treatment is accompanied by the introduction of crystal damage, such as simple scratching, miscut in the wafer or by implantation damage. X-ray reflectivity (XRR), Raman, and optical reflection measurements show that plain hydrogenation leads to a ~ 1 nm thick black titania surface layer without activity, while a colorless, density modified and ~ 7 nm thick layer with broken crystal symmetry is present in the ion implanted surface. These results demonstrate that i) the H-treatment of an intact anatase surface needs to be combined with defect formation for catalytic activation, and ii) activation does not necessarily coincide with the presence of black color.



rate research

Read More

Au nanoparticles at the TiO$_2$ surface can enhance the photocatalytic H$_2$ generation performances owing to their electron transfer co-catalytic ability. Key to maximize the co-catalytic effect is a fine control over Au nanoparticle size and placement on the photocatalyst, in relation to parameters such as the TiO$_2$ morphology, illumination wavelength and pathway, and light penetration depth in the photocatalyst. Here we present an approach for site-selective intrinsic-decoration of anodic TiO$_2$ nanotubes (TNs) with Au nanoparticles: we produce, by Ti and Au co-sputtering, Ti-Au alloy layers that feature compositional gradients across their thickness; these layers, when anodized under self-ordering electrochemical conditions, can form Au-decorated TNs where the Au nanoparticle density and placement vary according to the Au concentration profile in the metal alloy substrates. Our results suggest that, the Au co-catalyst placement strongly affects the photocatalytic H$_2$ evolution performance of the TNs layers. We demonstrate that, when growing Au-decorated TNs, the use of Ti-Au substrates with a suitable Au compositional gradient can lead to higher H$_2$ evolution rates compared to TNs classically grown with a homogenous co-catalyst decoration. As a side effect, a proper placement of the co-catalyst nanoparticles allows for reducing the amount of noble metal without dumping the H$_2$ evolution activity.
We investigate the photocatalytic performance of nanocomposites prepared in a one-step process by liquid-phase exfoliation of graphite in the presence of TiO$_2$ nanoparticles (NPs) at atmospheric pressure and in water, without heating or adding any surfactant, and starting from low-cost commercial reagents. The nanocomposites show enhanced photocatalytic activity, degrading up to 40$%$ more pollutants with respect to the starting TiO$_2$-NPs. In order to understand the photo-physical mechanisms underlying this enhancement, we investigate the photo-generation of reactive species (trapped holes and electrons) by ultrafast transient absorption spectroscopy. We observe an electron transfer process from TiO$_2$ to the graphite flakes within the first picoseconds of the relaxation dynamics, which causes the decrease of the charge recombination rate, and increases the efficiency of the reactive species photo-production.
Black TiO2 has gained increasing interest because of its outstanding properties and promising applications in a wide range of fields. Among the outstanding features of the material is that certain synthesis processes lead to the formation of an intrinsic co-catalytic center and thus enable noble-metal free photocatalytic H2 generation. In this work, we report grey TiO2 by an appropriate hydrogenation treatment exhibits excellent photocatalytic hydrogen. In this case, by the employment of thermally stable and high-surface-area TiO2 nanoparticles as well as mesoporous particles as the hydrogenation precursor, the appropriate extent of reduction of TiO2 (coloration) and the formation of Ti3+ is the key for the efficient noble-metal-free photocatalytic H2 generation. The EPR results reveal that grey TiO2 shows stronger Ti3+ feature at g ca. 1.93 than black TiO2 contributing to the intrinsic catalytic center for H2 evolution.
Gold-decorated TiO$_2$ nanotubes were used for the photocatalytic abatement of Hg(II) in aqueous solutions. The presence of dewetted Au nanoparticles induces a strong enhancement of photocatalytic reduction and scavenging performances, with respect to naked TiO$_2$. In the presence of chlorides, a massive formation of Hg2Cl2 nanowires, produced from Au nanoparticles, was observed using highly Au loaded photocatalysts to treat a 10 ppm Hg(II) solution. EDS and XPS confirmed the nature of the photo-produced nanowires. In the absence of chlorides and/or at lower Hg(II) starting concentrations, the scavenging of mercury proceeds through the formation of Hg-Au amalgams. Solar light driven Hg(II) abatements up to 90% were observed after 24h. ICP-MS analysis revealed that the removed Hg(II) is accumulated on the photocatalyst surface. Regeneration of Hg-loaded exhaust photocatalysts was easily performed by anodic stripping of Hg(0) and Hg(I) to Hg(II). After four catalytic-regeneration cycles only a 10% decrease of activity was observed.
In this work, we demonstrate that a well-established and facile ball milling approach using mixtures of commercial anatase nanoparticles and TiH2 introduces noble-metal-free photocatalytic H2 activity to titania. We characterize this synergistic effect in view of the nature of defects, state of hydroxylation, and investigate the effect on the energetics and kinetics of electronic states and the resulting H2 evolution performance.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا